Hi,

The SGDClassifier supports elastic net regularization. You can make it
solve the SVM loss function or the logistic loss function by changing
the `loss=` parameter.

Hope this helps,
Vlad

On Tue, Jul 22, 2014 at 4:17 PM, Sheila the angel
<from.d.pu...@gmail.com> wrote:
> Hello All,
>
> Is it possible to perform classification using linear models such as
> ElasticNet?
>
> I tried the following -
>
>
>
> from sklearn.linear_model import ElasticNet
>
> iris = datasets.load_iris()
>
> X= iris.data
>
> y= iris.target
>
>
> clf= ElasticNet()
>
> clf.fit(X,y).predict(X[0])
>
>
> Which gives output value in decimal points.
>
> Any suggestion or link to an example will be very helpful.
>
>
>
> Thanks
>
> --
>
> Sheila
>
>
>
>
> ------------------------------------------------------------------------------
> Want fast and easy access to all the code in your enterprise? Index and
> search up to 200,000 lines of code with a free copy of Black Duck
> Code Sight - the same software that powers the world's largest code
> search on Ohloh, the Black Duck Open Hub! Try it now.
> http://p.sf.net/sfu/bds
> _______________________________________________
> Scikit-learn-general mailing list
> Scikit-learn-general@lists.sourceforge.net
> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>

------------------------------------------------------------------------------
Want fast and easy access to all the code in your enterprise? Index and
search up to 200,000 lines of code with a free copy of Black Duck
Code Sight - the same software that powers the world's largest code
search on Ohloh, the Black Duck Open Hub! Try it now.
http://p.sf.net/sfu/bds
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to