not even kfold does that. the train sets overlap. what exactly is the
motivation for this?

On Thursday, August 14, 2014, Pagliari, Roberto <[email protected]>
wrote:

> Here is a note from the documentation:
>
> Note: contrary to other cross-validation strategies, random splits do not
> guarantee that all folds will be different, although this is still very
> likely for sizeable datasets.
>
> So I guess it is not possible to enforce all sets to be different.
>
> Thank you
>
>
> -----Original Message-----
> From: Gael Varoquaux [mailto:[email protected] <javascript:;>]
> Sent: Thursday, August 14, 2014 2:01 PM
> To: [email protected] <javascript:;>
> Subject: Re: [Scikit-learn-general] split function with non repeated sets
>
> > With k-fold you can shuffle the data, but let’s say you want to run
> > k-fold partition multiple times. Can you avoid repetition of the same
> > subset of samples?
>
> We call that 'shuffle split'
>
> http://scikit-learn.org/stable/modules/generated/sklearn.cross_validation.ShuffleSplit.html
>
> Examples of use:
> http://scikit-learn.org/stable/modules/cross_validation.html
>
> Gaël
>
>
> ------------------------------------------------------------------------------
> _______________________________________________
> Scikit-learn-general mailing list
> [email protected] <javascript:;>
> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>
> ------------------------------------------------------------------------------
> _______________________________________________
> Scikit-learn-general mailing list
> [email protected] <javascript:;>
> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>
------------------------------------------------------------------------------
_______________________________________________
Scikit-learn-general mailing list
[email protected]
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to