Great. And what about the confidence error? I mean, how should I select a
subset of classified data points such that the probability they belong to
any class is high whereas the confidence error is 95% or above?


On Tue, Aug 19, 2014 at 7:53 PM, Lars Buitinck <larsm...@gmail.com> wrote:

> 2014-08-19 18:03 GMT+02:00 Adamantios Corais <adamantios.cor...@gmail.com
> >:
> > I am looking for implementations \ configurations of machine learning
> > algorithms that, instead of a boolean value (class), they return a
> > probability along with the corresponding confidence error. Any hints?
>
> Any scikit-learn classifier that has a predict_proba member does this.
> Logistic regression, naive Bayes and the various tree ensembles come
> to mind.
>
>
> ------------------------------------------------------------------------------
> _______________________________________________
> Scikit-learn-general mailing list
> Scikit-learn-general@lists.sourceforge.net
> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>
------------------------------------------------------------------------------
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to