Great. And what about the confidence error? I mean, how should I select a subset of classified data points such that the probability they belong to any class is high whereas the confidence error is 95% or above?
On Tue, Aug 19, 2014 at 7:53 PM, Lars Buitinck <larsm...@gmail.com> wrote: > 2014-08-19 18:03 GMT+02:00 Adamantios Corais <adamantios.cor...@gmail.com > >: > > I am looking for implementations \ configurations of machine learning > > algorithms that, instead of a boolean value (class), they return a > > probability along with the corresponding confidence error. Any hints? > > Any scikit-learn classifier that has a predict_proba member does this. > Logistic regression, naive Bayes and the various tree ensembles come > to mind. > > > ------------------------------------------------------------------------------ > _______________________________________________ > Scikit-learn-general mailing list > Scikit-learn-general@lists.sourceforge.net > https://lists.sourceforge.net/lists/listinfo/scikit-learn-general >
------------------------------------------------------------------------------
_______________________________________________ Scikit-learn-general mailing list Scikit-learn-general@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/scikit-learn-general