hi Neal, you should concat the imaginery and real parts of the features.
X = np.c_[X.real, X.imag] if you use the euclidian distance it should do the join. Alex On Wed, Sep 17, 2014 at 8:05 PM, Mohamed-Rafik Bouguelia <bouguelia.med.ra...@gmail.com> wrote: > Hi, > You cannot use complex numbers, they should be real numbers. Each data point > should be in |R^d (where d is the dimensionality). > > > 2014-09-17 19:45 GMT+02:00 Neal Becker <ndbeck...@gmail.com>: >> >> I just tried k-nearest neighbors where the data are complex. It doesn't >> seem to >> work correctly. >> >> I tried >> >> import numpy as np >> from const64apsk import gen_constellation_64apsk >> >> const = gen_constellation_64apsk ('3/4') >> X = [[e] for e in const] >> y = np.arange(64) >> >> from sklearn.neighbors import KNeighborsClassifier >> neigh = KNeighborsClassifier(n_neighbors=3) >> neigh.fit(X, y) # doctest: +ELLIPSIS >> print(neigh.kneighbors([const[0]])) >> >> Don't worry about the module const64apsk, all that matters here are that >> const is a 1-d array of 64 complex values. >> >> I'm guessing KNeighborsClassifier doesn't understand complex arithmetic, >> and I'd >> need to give the points as 2-d real,imag values? >> >> -- >> -- Those who don't understand recursion are doomed to repeat it >> >> >> >> ------------------------------------------------------------------------------ >> Want excitement? >> Manually upgrade your production database. >> When you want reliability, choose Perforce >> Perforce version control. Predictably reliable. >> >> http://pubads.g.doubleclick.net/gampad/clk?id=157508191&iu=/4140/ostg.clktrk >> _______________________________________________ >> Scikit-learn-general mailing list >> Scikit-learn-general@lists.sourceforge.net >> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general > > > > > -- > Mohamed-Rafik BOUGUELIA > PhD Student > INRIA Nancy Grand Est - LORIA - READ Team > Nancy University - France. > > ------------------------------------------------------------------------------ > Want excitement? > Manually upgrade your production database. > When you want reliability, choose Perforce > Perforce version control. Predictably reliable. > http://pubads.g.doubleclick.net/gampad/clk?id=157508191&iu=/4140/ostg.clktrk > _______________________________________________ > Scikit-learn-general mailing list > Scikit-learn-general@lists.sourceforge.net > https://lists.sourceforge.net/lists/listinfo/scikit-learn-general > ------------------------------------------------------------------------------ Want excitement? Manually upgrade your production database. When you want reliability, choose Perforce Perforce version control. Predictably reliable. http://pubads.g.doubleclick.net/gampad/clk?id=157508191&iu=/4140/ostg.clktrk _______________________________________________ Scikit-learn-general mailing list Scikit-learn-general@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/scikit-learn-general