Hi Satra,

for a training set of shape (n_samples, n_features) the required memory 
should be O(n_samples * max(n_samples, n_features, n_components)).

The following additional memory is allocated:

* matrix of pairwise distances 'distances' (n_samples, n_samples)
* conditional probabilities 'conditional_P' (n_samples, n_samples)
* joint probabilities 'P' (n_samples, n_samples)
* matrix of pairwise distances in the embedded space 'n' (n_samples * 
(n_samples - 1))
* Student's t-distribution 'Q' (n_samples * (n_samples - 1))
* Kullback-Leibler divergence 'kl_divergence' (n_samples * (n_samples - 1))
* 'PQd' (n_samples, n_samples)
* 'grad' (n_samples * n_components)
* embedded data 'self.embedding_' (n_samples, n_components)

Best regards,

Alexander

> hi folks,
>
> does anyone know what the max memory usage is of TSNE in scikit learn? 
> for
a n x n dense matrix, how much memory is required?
 >
 > cheers,
 >
 > satra

------------------------------------------------------------------------------
Download BIRT iHub F-Type - The Free Enterprise-Grade BIRT Server
from Actuate! Instantly Supercharge Your Business Reports and Dashboards
with Interactivity, Sharing, Native Excel Exports, App Integration & more
Get technology previously reserved for billion-dollar corporations, FREE
http://pubads.g.doubleclick.net/gampad/clk?id=157005751&iu=/4140/ostg.clktrk
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to