What is your dataset size? I am a little bit curious whether you need the pipe.fit(), I'd do the CV usually like this
clf1 = Pipeline([ ('classifier', RandomForestClassifier(n_estimators=100, min_samples_leaf=10,random_state=random.seed(1234))) cv = KFold(n=X_train.shape[0], n_folds=5, random_state=123) scores = cross_val_score(clf1, X_train, y_train, cv=cv, scoring='accuracy') Best, Sebastian > On Dec 9, 2014, at 3:05 PM, He-chien Tsai <depot...@gmail.com> wrote: > > I got two strange cross-validation scores even I tried different parameter of > random_state in KFold, the last fold significantly lower than other folds > like this: > [0.66555285540704734, > 0.64459295261239369, > 0.64611178614823817, > 0.6488456865127582, > 0.65268915223336377, > 0.65603160133697969, > 0.66423579459130966, > 0.097538742023700997] > > [0.82442284325637905, > 0.8353584447144593, > 0.82685297691373028, > 0.82320777642770349, > 0.82685297691373028, > 0.82989064398541923, > 0.82006079027355627, > 0.64133738601823709] > My code is below > pipe = Pipeline([ > ('classifier', RandomForestClassifier(n_estimators=100, > min_samples_leaf=10,random_state=random.seed(1234))) > ]) > clfs = [ (pipe.fit(x[train_index], y[train_index]), (x[test_index], > y[test_index])) for > train_index, test_index in KFold(x.shape[0], n_folds=8, > shuffle=True, random_state=random.seed(125))] > scores = [m.accuracy_score(p[1][1], p[0].predict(p[1][0])) for p in clfs] > ------------------------------------------------------------------------------ > Download BIRT iHub F-Type - The Free Enterprise-Grade BIRT Server > from Actuate! Instantly Supercharge Your Business Reports and Dashboards > with Interactivity, Sharing, Native Excel Exports, App Integration & more > Get technology previously reserved for billion-dollar corporations, FREE > http://pubads.g.doubleclick.net/gampad/clk?id=164703151&iu=/4140/ostg.clktrk_______________________________________________ > Scikit-learn-general mailing list > Scikit-learn-general@lists.sourceforge.net > https://lists.sourceforge.net/lists/listinfo/scikit-learn-general ------------------------------------------------------------------------------ Download BIRT iHub F-Type - The Free Enterprise-Grade BIRT Server from Actuate! Instantly Supercharge Your Business Reports and Dashboards with Interactivity, Sharing, Native Excel Exports, App Integration & more Get technology previously reserved for billion-dollar corporations, FREE http://pubads.g.doubleclick.net/gampad/clk?id=164703151&iu=/4140/ostg.clktrk _______________________________________________ Scikit-learn-general mailing list Scikit-learn-general@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/scikit-learn-general