Until sample_weight is directly supported in Pipeline, you need to prefix `sample_weight` by the step name with '__'. So for Pipeline([('a', A()), ('b', B())] use fit_params={'a__sample_weight': sample_weight, 'b__sample_weight': sample_weight} or similar.
HTH On 10 June 2015 at 03:57, José Guilherme Camargo de Souza < jose.camargo.so...@gmail.com> wrote: > Hi Andy, > > Thanks for your reply. The full traceback is below, weights.shape and > the training data shape are: > > (773,) > (773, 82) > > I weas using a ExtraTreeClassifier but the same thing happens with an > SVC. It doesn't seem to be an estimator-specific issue. > > ... > ........................................................................... > /Users/jgcdesouza/anaconda/lib/python2.7/site-packages/sklearn/pipeline.pyc > in _pre_transform(self=Pipeline(steps=[('standardscaler', > StandardScale...one, shrinking=True, tol=0.001, verbose=False))]), > X=array([[ 16. , 16. , 1. , .... 1. , > 4. , 4. ]]), y=array([ 1., 1., 1., 1., 1., > 1., 1., 0., ..., 0., > 1., 1., 0., 0., 1., 1., 0.]), > **fit_params={'sample_weight': array([ 0.54980595, 0.54980595, > 0.54980595, 0...5, > 0.54980595, 0.54980595, 0.45019405])}) > 111 # Estimator interface > 112 > 113 def _pre_transform(self, X, y=None, **fit_params): > 114 fit_params_steps = dict((step, {}) for step, _ in > self.steps) > 115 for pname, pval in six.iteritems(fit_params): > --> 116 step, param = pname.split('__', 1) > 117 fit_params_steps[step][param] = pval > 118 Xt = X > 119 for name, transform in self.steps[:-1]: > 120 if hasattr(transform, "fit_transform"): > > ValueError: need more than 1 value to unpack > ___________________________________________________________________________ > > Process finished with exit code 1 > """ > > > > José Guilherme > >
------------------------------------------------------------------------------
_______________________________________________ Scikit-learn-general mailing list Scikit-learn-general@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/scikit-learn-general