np.nan_to_num replaces NaN's with zeros. If you want to take into account
the fact that you are normalizing over less entries, you need to do

normalize(np.nan_to_num(X)) * np.sqrt(np.isnan(X).sum(0) /
float(X.shape[0]))



On Mon, Jun 15, 2015 at 5:28 PM, Andreas Mueller <t3k...@gmail.com> wrote:

>  Hey.
> Not with scikit-learn but it should be about three lines in numpy to do it
> yourself.
> I would replace them with 0 for computing the norm, that is all there is,
> right?
>
> Andy
>
>
> On 06/15/2015 10:43 AM, William Correa beltran wrote:
>
>  Hello,
>
>  I would like to know if there is a way to normalize a numpy array using
> the preprocessing.normalize function when some of the values are of type
> nan. I prefer not to imput then, just to ignore them at the normalize
> process.
>
>  Thanks in advance,
> William Correa
>
>
> ------------------------------------------------------------------------------
>
>
>
> _______________________________________________
> Scikit-learn-general mailing 
> listScikit-learn-general@lists.sourceforge.nethttps://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>
>
>
>
> ------------------------------------------------------------------------------
>
> _______________________________________________
> Scikit-learn-general mailing list
> Scikit-learn-general@lists.sourceforge.net
> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>
>
------------------------------------------------------------------------------
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to