This code that uses RandomizedSearchCV works fine in 0.15.2: import pandas as pd from sklearn.pipeline import Pipeline from sklearn.datasets import load_iris from sklearn.ensemble import RandomForestClassifier from sklearn.grid_search import RandomizedSearchCV
iris = load_iris() X = iris.data y = iris.target pipeline = Pipeline([("rf", RandomForestClassifier())]) params = { "rf__n_estimators": range(10,50), "rf__max_depth": range(5,10), "rf__max_features": range(1, 5), "rf__min_samples_split": range(5,101), "rf__min_samples_leaf": range(20,50), "rf__max_leaf_nodes": range(200, 350)} random_search = RandomizedSearchCV(pipeline, params).fit(X, y) It does not work in 0.16.1. When I kill the process, here is the Traceback: --------------------------------------------------------------------------- KeyboardInterrupt Traceback (most recent call last) <ipython-input-108-8794e7d30469> in <module>() 24 random_search = RandomizedSearchCV(pipeline, params, n_iter=n_iter_search, cv=2, refit=True, n_jobs=1) 25 ---> 26 random_search.fit(X_iris, y_iris) /.../lib/python2.7/site-packages/sklearn/grid_search.pyc in fit(self, X, y) 896 self.n_iter, 897 random_state=self.random_state) --> 898 return self._fit(X, y, sampled_params) /.../lib/python2.7/site-packages/sklearn/grid_search.pyc in _fit(self, X, y, parameter_iterable) 503 self.fit_params, return_parameters=True, 504 error_score=self.error_score) --> 505 for parameters in parameter_iterable 506 for train, test in cv) 507 /.../lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in __call__(self, iterable) 656 os.environ[JOBLIB_SPAWNED_PROCESS] = '1' 657 self._iterating = True --> 658 for function, args, kwargs in iterable: 659 self.dispatch(function, args, kwargs) 660 /.../lib/python2.7/site-packages/sklearn/grid_search.pyc in <genexpr>(***failed resolving arguments***) 499 pre_dispatch=pre_dispatch 500 )( --> 501 delayed(_fit_and_score)(clone(base_estimator), X, y, self.scorer_, 502 train, test, self.verbose, parameters, 503 self.fit_params, return_parameters=True, /.../lib/python2.7/site-packages/sklearn/grid_search.pyc in __iter__(self) 180 if all_lists: 181 # get complete grid and yield from it --> 182 param_grid = list(ParameterGrid(self.param_distributions)) 183 grid_size = len(param_grid) 184 /.../lib/python2.7/site-packages/sklearn/grid_search.pyc in __iter__(self) 100 keys, values = zip(*items) 101 for v in product(*values): --> 102 params = dict(zip(keys, v)) 103 yield params 104 KeyboardInterrupt: Any thoughts? ------------------------------------------------------------------------------ Monitor 25 network devices or servers for free with OpManager! OpManager is web-based network management software that monitors network devices and physical & virtual servers, alerts via email & sms for fault. Monitor 25 devices for free with no restriction. Download now http://ad.doubleclick.net/ddm/clk/292181274;119417398;o _______________________________________________ Scikit-learn-general mailing list Scikit-learn-general@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/scikit-learn-general