FWIW, I had some luck with this modification of AdaBoostClassifier: diff --git a/sklearn/ensemble/weight_boosting.py b/sklearn/ensemble/weight_boost index 46467d7..bc5a762 100644 --- a/sklearn/ensemble/weight_boosting.py +++ b/sklearn/ensemble/weight_boosting.py @@ -573,6 +573,9 @@ class AdaBoostClassifier(BaseWeightBoosting, ClassifierMixin np.log((1. - estimator_error) / estimator_error) + np.log(n_classes - 1.)) + # Boost false-positives... bit of a hack. + incorrect = 2*(y_predict > y) + 1*(y_predict < y) + # Only boost the weights if I will fit again if not iboost == self.n_estimators - 1: # Only boost positive weights
------------------------------------------------------------------------------ _______________________________________________ Scikit-learn-general mailing list Scikit-learn-general@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/scikit-learn-general