There is no code to do it automatically, but you can use the following to
get array of thresholds:

```
clf = DecisionTreeClassifier()
clf.fit( datums, targets )
clf.tree_.thresholds
```

The full list of attributes you can call are (feature, threshold, impurity,
n_node_samples, weighted_n_node_samples, value (the prediction),
children_left, children_right).

Does this help?



On Tue, Aug 18, 2015 at 7:53 AM, Andreas Mueller <t3k...@gmail.com> wrote:

> I'm not aware of any ready-made code. But you can just get the boolean
> matrix by using ``apply`` and a one-hot encoder.
> Why are you interested in a single leave? the query seems to be able to
> return "only" a single boolean.
> It is probably more efficient to traverse the full tree for each data
> point if you are interested in all the leafs.
>
>
> On 08/18/2015 11:39 AM, Rex X wrote:
>
> Hi everyone,
>
> Is it possible to extract the decision tree rule associated with each leaf
> node into a Pandas Dataframe query
> <http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.query.html>?
> So that one can view the corresponding Dataframe content by feeding in the
> decision rule.
>
> Best,
> Rex
>
>
> ------------------------------------------------------------------------------
>
>
>
> _______________________________________________
> Scikit-learn-general mailing 
> listScikit-learn-general@lists.sourceforge.nethttps://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>
>
>
>
> ------------------------------------------------------------------------------
>
> _______________________________________________
> Scikit-learn-general mailing list
> Scikit-learn-general@lists.sourceforge.net
> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>
>
------------------------------------------------------------------------------
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to