Thanks a lot this is definitively interesting.

More advices are welcome !


On Sat, Sep 26, 2015 at 9:36 PM Sebastian Raschka <se.rasc...@gmail.com>
wrote:

> Hm,
> best practices for dealing with class imbalances are (still) a tricky
> business I think. Typically, you see people using different sample
> techniques to shift the bias towards the minority class (most often by
> oversampling). I think the class weight in scikit-learn's has a (very)
> similar effect here? I remember an interesting paper about a “skew
> insensitive splitting criterion” using Gini and ROC but I haven’t
> implemented/tried it yet:
> https://www.cs.bris.ac.uk/~flach/papers/icml03-226.pdf (The Geometry of
> ROC Space:
> Understanding Machine Learning Metrics through ROC Isometrics).
>
> Best,
> Sebastian
>
>
> > On Sep 26, 2015, at 8:50 AM, Luca Puggini <lucapug...@gmail.com> wrote:
> >
> > Hi,
> >
> > I have binary output y where class 0 has much more samples than class 1.
> > I am trying to understand the importance of each predictor.
> >
> > I do not know if the class weights should be used or not when the tree
> is trained i.e.
> >
> > etw = ExtraTreesClassifier(n_estimators=n_estimators, max_depth = 5,
> class_weight='auto')
> > or
> > et = ExtraTreesClassifier(n_estimators=n_estimators, max_depth = 5)
> >
> > Is there a preferred option or some literature about this ?
> >
> > Thanks,
> > Luca
> > --
> > Sent by mobile phone
> >
> >
> ------------------------------------------------------------------------------
> > _______________________________________________
> > Scikit-learn-general mailing list
> > Scikit-learn-general@lists.sourceforge.net
> > https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>
>
>
> ------------------------------------------------------------------------------
> _______________________________________________
> Scikit-learn-general mailing list
> Scikit-learn-general@lists.sourceforge.net
> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>
-- 

Sent by mobile phone
------------------------------------------------------------------------------
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to