scipy allows to perform the friedman test.
Orange has the tool to drawn the critical distance diagram.

And you can easily compute the critical distance using stats model:

from statsmodels.stats.libqsturng import qsturng
q_alpha = qsturng(1 - alpha, n_methods, np.inf) / np.sqrt(2)
cd = q_alpha * np.sqrt(n_methods * (n_methods + 1) / (6 * n_datasets))


Best regards,
Arnaud


> On 29 Oct 2015, at 17:48, Andreas Mueller <t3k...@gmail.com> wrote:
> 
> Sorry, don't know of a package. But it might be interesting for sklearn?
> 
> So that's a Nemenyi test?
> https://en.wikipedia.org/wiki/Nemenyi_test 
> <https://en.wikipedia.org/wiki/Nemenyi_test>
> 
> I never heard of that but it sounds interesting.
> 
> It seems a bit hard to interpret, though.
> Also: does the diagram punt if the initial multiple comparison null 
> hypothesis can not be rejected?
> 
> Only looking at ranks also seems to discard a lot of information....
> 
> Here is the reference (I think):
> http://www.jmlr.org/papers/v7/demsar06a.html 
> <http://www.jmlr.org/papers/v7/demsar06a.html>
> 
> Seems pretty well-cited.
> 
> 
> 
> On 10/29/2015 09:28 AM, Dayvid Victor wrote:
>> Hi,
>> 
>> Do you guys know any tool to generate CDdiagram - in order to evaluate the 
>> difference of performance of sklearn classifiers?
>> 
>> <Mail Attachment.png>
>> http://theoval.cmp.uea.ac.uk/matlab/critdiff/cd1.png 
>> <http://theoval.cmp.uea.ac.uk/matlab/critdiff/cd1.png>​
>> 
>> There is a R package called performanceEstimation which has
>> a CDdiagram implementation, but it uses an specific R object
>> [it is not as simple as it should be to connect using rpy2].
>> 
>> 
>> Thanks,
>> -- 
>> Dayvid Victor R. de Oliveira
>> PhD Candidate in Computer Science at Federal University of Pernambuco (UFPE)
>> MSc in Computer Science at Federal University of Pernambuco (UFPE)
>> BSc in Computer Engineering - Federal University of Pernambuco (UFPE)
>> 
>> 
>> ------------------------------------------------------------------------------
>> 
>> 
>> _______________________________________________
>> Scikit-learn-general mailing list
>> Scikit-learn-general@lists.sourceforge.net 
>> <mailto:Scikit-learn-general@lists.sourceforge.net>
>> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general 
>> <https://lists.sourceforge.net/lists/listinfo/scikit-learn-general>
> 
> ------------------------------------------------------------------------------
> _______________________________________________
> Scikit-learn-general mailing list
> Scikit-learn-general@lists.sourceforge.net 
> <mailto:Scikit-learn-general@lists.sourceforge.net>
> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general 
> <https://lists.sourceforge.net/lists/listinfo/scikit-learn-general>

------------------------------------------------------------------------------
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to