On Thu, 05 Nov 2015, Andreas Mueller wrote:

> I'm happy to announce the release of scikit-learn 0.17.

Congrats!

FWIW, for those using your apt/deb package manager, 0.17  is available
(including python3-sklearn package) from neurodebian.  

Moreover, in duecredit project (available from github/pypi) we have
added some more injections for sklearn citations [1]. So if you are
interested to easily get citations for sklearn and used by your analysis
script methods papers, just run your script with "python -m duecredit".
(if interested to see your publication listed -- contribute!)

So if I run scikit-learn's tests this way 

  python -m duecredit /usr/bin/nosetests -s -v sklearn 

I get:

DueCredit Report:
- Data analysis library for tabular data / pandas (v 0.17.0+git8-gcac4ad2) [1]
- Scientific tools library / scipy (v 0.16) [2]
- Machine Learning library / sklearn (v 0.17) [3]
  - Affinity propagation clustering algorithm / 
sklearn.cluster.affinity_propagation_ (v 0.17) [4]
  - Spectral Biclustering algorithm / 
sklearn.cluster.bicluster:SpectralBiclustering._fit (v 0.17) [5]
  - Spectral Coclustering algorithm / 
sklearn.cluster.bicluster:SpectralCoclustering._fit (v 0.17) [5]
  - dbscan clustering algorithm / sklearn.cluster.dbscan_:dbscan (v 0.17) [6]
  - Mean shift clustering algorithm / sklearn.cluster.mean_shift_:mean_shift (v 
0.17) [7]
  - Spectral clustering / sklearn.cluster.spectral:spectral_clustering (v 0.17) 
[8]
  - Random forest classifiers / 
sklearn.ensemble.forest:RandomForestClassifier.predict_proba (v 0.17) [9]
  - Random forest regressions / 
sklearn.ensemble.forest:RandomForestRegressor.predict (v 0.17) [9]
  - Classification and regression trees / 
sklearn.tree.tree:DecisionTreeClassifier.predict_proba (v 0.17) [10]

3 packages cited
1 modules cited
8 functions cited

References
----------

[1] McKinney, 2010.  Data Structures for Statistical Computing in Python . In 
S. van der Walt & Millman, eds.  Proceedings of the 9th Python in Science 
Conference . pp. 51–56.
[2] Jones, E. et al., 2001. SciPy: Open source scientific tools for Python.
[3] Pedregosa, F. et al., 2011. Scikit-learn: Machine learning in Python. The 
Journal of Machine Learning Research, 12, pp.2825–2830.
[4] Frey, B.J. & Dueck, D., 2007. Clustering by Passing Messages Between Data 
Points. Science, 315(5814), pp.972–976.
[5] Kluger, Y., 2003. Spectral Biclustering of Microarray Data: Coclustering 
Genes and Conditions. Genome Research, 13(4), pp.703–716.
[6] Ester, M. et al., 1996. A density-based algorithm for discovering clusters 
in large spatial databases with noise.. In Kdd. pp. 226–231.
[7] Comaniciu, D. & Meer, P., 2002. Mean shift: a robust approach toward 
feature space analysis. IEEE Trans. Pattern Anal. Machine Intell., 24(5), 
pp.603–619.
[8] von Luxburg, U., 2007. A tutorial on spectral clustering. Stat Comput, 
17(4), pp.395–416.
[9] Breiman, L., 2001. Machine Learning, 45(1), pp.5–32.
[10] Breiman, L. et al., 1984. Classification and Regression Trees, Monterey, 
CA: Wadsworth and Brooks.

Cheers and sorry for a shameless plug! ;)

[1] 
https://github.com/duecredit/duecredit/blob/master/duecredit/injections/mod_sklearn.py

-- 
Yaroslav O. Halchenko
Center for Open Neuroscience     http://centerforopenneuroscience.org
Dartmouth College, 419 Moore Hall, Hinman Box 6207, Hanover, NH 03755
Phone: +1 (603) 646-9834                       Fax: +1 (603) 646-1419
WWW:   http://www.linkedin.com/in/yarik        

------------------------------------------------------------------------------
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to