Providing the full StackTrace here:[ code in previous email]

# Tuning hyper-parameters for precision
()

---------------------------------------------------------------------------ValueError
                               Traceback (most recent call
last)<ipython-input-85-7fedbaf85b7d> in <module>()     18
          scoring='%s_weighted' % score)     19 ---> 20
clf.fit(Finaldata, y)     21      22     print("Best parameters set
found on development set:")
D:\Anaconda\lib\site-packages\sklearn\grid_search.pyc in fit(self, X,
y)    730     731         """--> 732         return self._fit(X, y,
ParameterGrid(self.param_grid))    733     734
D:\Anaconda\lib\site-packages\sklearn\grid_search.pyc in _fit(self, X,
y, parameter_iterable)    503
self.fit_params, return_parameters=True,    504
             error_score=self.error_score)--> 505                 for
parameters in parameter_iterable    506                 for train,
test in cv)    507
D:\Anaconda\lib\site-packages\sklearn\externals\joblib\parallel.pyc in
__call__(self, iterable)    657             self._iterating = True
658             for function, args, kwargs in iterable:--> 659
        self.dispatch(function, args, kwargs)    660     661
  if pre_dispatch == "all" or n_jobs == 1:
D:\Anaconda\lib\site-packages\sklearn\externals\joblib\parallel.pyc in
dispatch(self, func, args, kwargs)    404         """    405
if self._pool is None:--> 406             job = ImmediateApply(func,
args, kwargs)    407             index = len(self._jobs)    408
     if not _verbosity_filter(index, self.verbose):
D:\Anaconda\lib\site-packages\sklearn\externals\joblib\parallel.pyc in
__init__(self, func, args, kwargs)    138         # Don't delay the
application, to avoid keeping the input    139         # arguments in
memory--> 140         self.results = func(*args, **kwargs)    141
142     def get(self):
D:\Anaconda\lib\site-packages\sklearn\cross_validation.pyc in
_fit_and_score(estimator, X, y, scorer, train, test, verbose,
parameters, fit_params, return_train_score, return_parameters,
error_score)   1457             estimator.fit(X_train, **fit_params)
1458         else:-> 1459             estimator.fit(X_train, y_train,
**fit_params)   1460    1461     except Exception as e:
D:\Anaconda\lib\site-packages\sklearn\linear_model\stochastic_gradient.pyc
in fit(self, X, y, coef_init, intercept_init, class_weight,
sample_weight)    562                          loss=self.loss,
learning_rate=self.learning_rate,    563
coef_init=coef_init, intercept_init=intercept_init,--> 564
             sample_weight=sample_weight)    565     566
D:\Anaconda\lib\site-packages\sklearn\linear_model\stochastic_gradient.pyc
in _fit(self, X, y, alpha, C, loss, learning_rate, coef_init,
intercept_init, sample_weight)    401             self.classes_ = None
   402 --> 403         X, y = check_X_y(X, y, 'csr', dtype=np.float64,
order="C")    404         n_samples, n_features = X.shape    405
D:\Anaconda\lib\site-packages\sklearn\utils\validation.pyc in
check_X_y(X, y, accept_sparse, dtype, order, copy, force_all_finite,
ensure_2d, allow_nd, multi_output, ensure_min_samples,
ensure_min_features, y_numeric)    447
dtype=None)    448     else:--> 449         y = column_or_1d(y,
warn=True)    450         _assert_all_finite(y)    451     if
y_numeric and y.dtype.kind == 'O':
D:\Anaconda\lib\site-packages\sklearn\utils\validation.pyc in
column_or_1d(y, warn)    483         return np.ravel(y)    484 --> 485
    raise ValueError("bad input shape {0}".format(shape))    486
487
ValueError: bad input shape (914551, 6)



On Mon, Dec 28, 2015 at 4:08 PM, Startup Hire <blrstartuph...@gmail.com>
wrote:

> Hi all,
>
> Hope you are doing well.
>
> I am working on fine tuning the following parameters in SGD Classifier
> which I am using inside OneVsRest Classifier.
>
> I am using GridSearch to use the same.
>
> I have following questions:
>
>
>    1. How to use GridSearch to optimize OneVsRest Classifier?
>    2. Any reason why the below code does not work? Error is bad input
>    shape though the classifier.fit works find separately!
>
>
>
>
>
>
> from sklearn.grid_search import GridSearchCV
>
>
> # Set the parameters by cross-validation
>
> tuned_parameters = [{'alpha': [0.001, 0.01,0.1,0.5] ,
>                      'penalty': ['l1','l2','elasticnet'],
>                      'loss':['log','modified_huber']}]
>
>
> scores = ['precision', 'recall']
>
> for score in scores:
>     print("# Tuning hyper-parameters for %s" % score)
>     print()
>
>     clf =
> GridSearchCV(SGDClassifier(random_state=0,learning_rate='optimal',class_weight='auto',n_iter=100),
> tuned_parameters, cv=5,
>                        scoring='%s_weighted' % score)
>
>     clf.fit(Finaldata, y)
>
>     print("Best parameters set found on development set:")
>     print()
>     print(clf.best_params_)
>     print()
>
>
> Regards,
> Sanant
>
------------------------------------------------------------------------------
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to