Providing the full StackTrace here:[ code in previous email] # Tuning hyper-parameters for precision ()
---------------------------------------------------------------------------ValueError Traceback (most recent call last)<ipython-input-85-7fedbaf85b7d> in <module>() 18 scoring='%s_weighted' % score) 19 ---> 20 clf.fit(Finaldata, y) 21 22 print("Best parameters set found on development set:") D:\Anaconda\lib\site-packages\sklearn\grid_search.pyc in fit(self, X, y) 730 731 """--> 732 return self._fit(X, y, ParameterGrid(self.param_grid)) 733 734 D:\Anaconda\lib\site-packages\sklearn\grid_search.pyc in _fit(self, X, y, parameter_iterable) 503 self.fit_params, return_parameters=True, 504 error_score=self.error_score)--> 505 for parameters in parameter_iterable 506 for train, test in cv) 507 D:\Anaconda\lib\site-packages\sklearn\externals\joblib\parallel.pyc in __call__(self, iterable) 657 self._iterating = True 658 for function, args, kwargs in iterable:--> 659 self.dispatch(function, args, kwargs) 660 661 if pre_dispatch == "all" or n_jobs == 1: D:\Anaconda\lib\site-packages\sklearn\externals\joblib\parallel.pyc in dispatch(self, func, args, kwargs) 404 """ 405 if self._pool is None:--> 406 job = ImmediateApply(func, args, kwargs) 407 index = len(self._jobs) 408 if not _verbosity_filter(index, self.verbose): D:\Anaconda\lib\site-packages\sklearn\externals\joblib\parallel.pyc in __init__(self, func, args, kwargs) 138 # Don't delay the application, to avoid keeping the input 139 # arguments in memory--> 140 self.results = func(*args, **kwargs) 141 142 def get(self): D:\Anaconda\lib\site-packages\sklearn\cross_validation.pyc in _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_score, return_parameters, error_score) 1457 estimator.fit(X_train, **fit_params) 1458 else:-> 1459 estimator.fit(X_train, y_train, **fit_params) 1460 1461 except Exception as e: D:\Anaconda\lib\site-packages\sklearn\linear_model\stochastic_gradient.pyc in fit(self, X, y, coef_init, intercept_init, class_weight, sample_weight) 562 loss=self.loss, learning_rate=self.learning_rate, 563 coef_init=coef_init, intercept_init=intercept_init,--> 564 sample_weight=sample_weight) 565 566 D:\Anaconda\lib\site-packages\sklearn\linear_model\stochastic_gradient.pyc in _fit(self, X, y, alpha, C, loss, learning_rate, coef_init, intercept_init, sample_weight) 401 self.classes_ = None 402 --> 403 X, y = check_X_y(X, y, 'csr', dtype=np.float64, order="C") 404 n_samples, n_features = X.shape 405 D:\Anaconda\lib\site-packages\sklearn\utils\validation.pyc in check_X_y(X, y, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, multi_output, ensure_min_samples, ensure_min_features, y_numeric) 447 dtype=None) 448 else:--> 449 y = column_or_1d(y, warn=True) 450 _assert_all_finite(y) 451 if y_numeric and y.dtype.kind == 'O': D:\Anaconda\lib\site-packages\sklearn\utils\validation.pyc in column_or_1d(y, warn) 483 return np.ravel(y) 484 --> 485 raise ValueError("bad input shape {0}".format(shape)) 486 487 ValueError: bad input shape (914551, 6) On Mon, Dec 28, 2015 at 4:08 PM, Startup Hire <blrstartuph...@gmail.com> wrote: > Hi all, > > Hope you are doing well. > > I am working on fine tuning the following parameters in SGD Classifier > which I am using inside OneVsRest Classifier. > > I am using GridSearch to use the same. > > I have following questions: > > > 1. How to use GridSearch to optimize OneVsRest Classifier? > 2. Any reason why the below code does not work? Error is bad input > shape though the classifier.fit works find separately! > > > > > > > from sklearn.grid_search import GridSearchCV > > > # Set the parameters by cross-validation > > tuned_parameters = [{'alpha': [0.001, 0.01,0.1,0.5] , > 'penalty': ['l1','l2','elasticnet'], > 'loss':['log','modified_huber']}] > > > scores = ['precision', 'recall'] > > for score in scores: > print("# Tuning hyper-parameters for %s" % score) > print() > > clf = > GridSearchCV(SGDClassifier(random_state=0,learning_rate='optimal',class_weight='auto',n_iter=100), > tuned_parameters, cv=5, > scoring='%s_weighted' % score) > > clf.fit(Finaldata, y) > > print("Best parameters set found on development set:") > print() > print(clf.best_params_) > print() > > > Regards, > Sanant >
------------------------------------------------------------------------------
_______________________________________________ Scikit-learn-general mailing list Scikit-learn-general@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/scikit-learn-general