Hi,
I am working with an implementation of the mean shift algorithm using sklearn.cluster from
http://scikit-learn.org/stable/auto_examples/cluster/plot_mean_shift.html
and would like to compute the ellipses around the clusters.
Is there an implementation for this?
Thanks
http://scikit-learn.org/stable/auto_examples/cluster/plot_mean_shift.html
and would like to compute the ellipses around the clusters.
Is there an implementation for this?
Thanks
""" ============================================= A demo of the mean-shift clustering algorithm =============================================
Reference:
Dorin Comaniciu and Peter Meer, "Mean Shift: A robust approach toward
feature space analysis". IEEE Transactions on Pattern Analysis and
Machine Intelligence. 2002. pp. 603-619.
"""
print(__doc__)
import numpy as np
from sklearn.cluster import MeanShift, estimate_bandwidth
from sklearn.datasets.samples_generator import make_blobs
import numpy as np
from read_data import read_data
slide = 15
data = read_data()
points = data[slide]
X = np.array(points)
###############################################################################
# Generate sample datacenters = [[1, 1], [-1, -1], [1, -1]]
#, _ = make_blobs(n_samples=1000, centers=centers, cluster_std=0.6)
###############################################################################
# Compute clustering with MeanShift
# print bandwidth
bandwidth = 100
ms = MeanShift(bandwidth=bandwidth, bin_seeding=True)
ms.fit(X)
labels = ms.labels_
cluster_centers = ms.cluster_centers_
labels_unique = np.unique(labels)
n_clusters_ = len(labels_unique)
print("number of estimated clusters : %d" % n_clusters_)
###############################################################################
# Plot result
import matplotlib.pyplot as plt
from itertools import cycle
plt.figure(1)
plt.clf()
plt.axis([0, 1024, 0, 768])
colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk')
for k, col in zip(range(n_clusters_), colors):
my_members = labels == k
cluster_center = cluster_centers[k]
plt.plot(X[my_members, 0], X[my_members, 1], col + '.')
plt.show()
------------------------------------------------------------------------------ Transform Data into Opportunity. Accelerate data analysis in your applications with Intel Data Analytics Acceleration Library. Click to learn more. http://makebettercode.com/inteldaal-eval
_______________________________________________ Scikit-learn-general mailing list [email protected] https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
