Hi Fred,

We use the __init__ signature to get the list of parameters that (a) can be
set by grid search; (b) need to be copied to a cloned instance of the
estimator (with any fitted model discarded) in constructing ensembles,
cross validation, etc. While none of the scikit-learn library of estimators
do this, in practice you can overload get_params to define your own
parameter listing. See
http://scikit-learn.org/stable/developers/contributing.html#get-params-and-set-params

On 23 March 2016 at 14:45, Fred Mailhot <fred.mail...@gmail.com> wrote:

> Hello list,
>
> Firstly, thanks for this incredible package; I use it daily at work. Now
> on to the meat: I'm trying to subclass TfidfVectorizer and running into
> issues. I want to specify an extra param for __init__() that points to a
> file that gets used in build_analyzer(). Skipping irrelevant bits, I've got
> the following:
>
> #======================
> class WordCooccurrenceVectorizer(TfidfVectorizer):
>
>     ### override __init__ to add w2v_clusters arg
>     # see
> http://stackoverflow.com/questions/2215923/avoid-specifying-all-arguments-in-a-subclass
>     # for explanation of syntax
>     def __init__(self, *args, **kwargs):
>         try:
>             self.w2v_cluster_path = kwargs.pop("w2v_clusters")
>         except KeyError:
>             pass
>         super(WordCooccurrenceVectorizer, self).__init__(*args, **kwargs)
>
>     def build_analyzer(self):
>         preprocess = self.build_preprocessor()
>         stopwords = self.get_stop_words()
>         w2v_clusters = self.load_w2v_clusters()
>         tokenize = self.build_tokenizer()
>         return lambda doc:
> self._nwise(tokenize(preprocess(self.decode(doc))), stopwords, w2v_clusters)
>     [...]
> #======================
>
> I can instantiate this, but when I want to inspect it, I get the following
> (this is in ipython, in a script it just hangs):
>
> #======================
> In [2]: vec = WordCooccurrenceVectorizer(ngram_range=(2,2),
> stop_words="english", max_df=0.5, min_df=1, max_features=10000,
> w2v_clusters="clusters.20160322_1803.w2v", binary=True)
>
> In [3]: vec
> Out[3]:
> ---------------------------------------------------------------------------
> RuntimeError                              Traceback (most recent call last)
> /Users/fredmailhot/anaconda/envs/csai_experiments/lib/python2.7/site-packages/IPython/core/formatters.pyc
> in __call__(self, obj)
>     697                 type_pprinters=self.type_printers,
>     698                 deferred_pprinters=self.deferred_printers)
> --> 699             printer.pretty(obj)
>     700             printer.flush()
>     701             return stream.getvalue()
>
> [...]
>
> /Users/fredmailhot/anaconda/envs/csai_experiments/lib/python2.7/site-packages/sklearn/base.pyc
> in _get_param_names(cls)
>     193                                    " %s with constructor %s
> doesn't "
>     194                                    " follow this convention."
> --> 195                                    % (cls, init_signature))
>     196         # Extract and sort argument names excluding 'self'
>     197         return sorted([p.name for p in parameters])
>
> RuntimeError: scikit-learn estimators should always specify their
> parameters in the signature of their __init__ (no varargs). <class
> 'cooc_vectorizer.WordCooccurrenceVectorizer'> with constructor (<self>,
> *args, **kwargs) doesn't  follow this convention.
>
> In [4]:
> #======================
>
> The error is clear enough -- I can't use *args and **kwargs in a sklearn
> estimator's __init__() -- but I'm not sure what the correct way is to do
> what I need to do. Do I literally need to specify all of the __init__
> params in my subclass and then pass them on to the __init__ of super()? If
> so, what's the reason for setting this up this way?
>
>
> Thanks for any pointers/guidance,
> Fred.
>
>
>
> ------------------------------------------------------------------------------
> Transform Data into Opportunity.
> Accelerate data analysis in your applications with
> Intel Data Analytics Acceleration Library.
> Click to learn more.
> http://pubads.g.doubleclick.net/gampad/clk?id=278785351&iu=/4140
> _______________________________________________
> Scikit-learn-general mailing list
> Scikit-learn-general@lists.sourceforge.net
> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>
>
------------------------------------------------------------------------------
Transform Data into Opportunity.
Accelerate data analysis in your applications with
Intel Data Analytics Acceleration Library.
Click to learn more.
http://pubads.g.doubleclick.net/gampad/clk?id=278785351&iu=/4140
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to