Have you tried to "score" the grid-search on the non-training set?
The cross-validation is using stratified k-fold while your confirmation used the beginning of the dataset vs the rest.
Your data is probably not IID.


On 03/10/2016 01:08 AM, Juan Nunez-Iglesias wrote:
Hi all,

TL;DR: when I run GridSearchCV with RandomForestClassifier and "many" samples (280K), it falsely shows accuracy of 1.0 for full trees (max_depth=None). This doesn't happen for fewer samples.

Longer version:

I'm trying to optimise RF hyperparameters using GridSearchCV for the first time. I have a lot of data (~3M samples, 140 features), so I subsampled it to do this. First I subsampled to 3000 samples, which finished in 5min, so I ran 70K samples to see if result would still hold. This resulted in completely different parameter choices, so I ran 280K samples overnight, to see whether at least the choices would stabilise as n -> inf. Then when I printed the top 10 models, I got the following:

In [7]: bests = sorted(random_search.grid_scores_, reverse=True, key=lambda x: x
[1])

In [8]: bests[:10]
Out[8]:
[mean: 1.00000, std: 0.00000, params: {'n_estimators': 500, 'bootstrap': True, '
max_features': 'auto', 'max_depth': None, 'criterion': 'gini'},
mean: 1.00000, std: 0.00000, params: {'n_estimators': 500, 'bootstrap': True, '
max_features': 5, 'max_depth': None, 'criterion': 'gini'},
mean: 1.00000, std: 0.00000, params: {'n_estimators': 200, 'bootstrap': True, '
max_features': 'auto', 'max_depth': None, 'criterion': 'entropy'},
mean: 1.00000, std: 0.00000, params: {'n_estimators': 200, 'bootstrap': True, '
max_features': 5, 'max_depth': None, 'criterion': 'entropy'},
mean: 1.00000, std: 0.00000, params: {'n_estimators': 200, 'bootstrap': True, '
max_features': 20, 'max_depth': None, 'criterion': 'entropy'},
mean: 1.00000, std: 0.00000, params: {'n_estimators': 20, 'bootstrap': False, '
max_features': 'auto', 'max_depth': None, 'criterion': 'gini'},
mean: 1.00000, std: 0.00000, params: {'n_estimators': 100, 'bootstrap': False,
'max_features': 'auto', 'max_depth': None, 'criterion': 'gini'},
mean: 1.00000, std: 0.00000, params: {'n_estimators': 20, 'bootstrap': False, '
max_features': 5, 'max_depth': None, 'criterion': 'gini'},
mean: 1.00000, std: 0.00000, params: {'n_estimators': 100, 'bootstrap': False,
'max_features': 5, 'max_depth': None, 'criterion': 'gini'},
mean: 1.00000, std: 0.00000, params: {'n_estimators': 500, 'bootstrap': False,
'max_features': 5, 'max_depth': None, 'criterion': 'gini'}]

Needless to say, perfect accuracy is suspicious, and indeed, in this case, completely spurious:

In [16]: rftop = ensemble.RandomForestClassifier(**{'n_estimators': 20, 'bootstr ap': False, 'max_features': 'auto', 'max_depth': None, 'criterion': 'gini'})

In [17]: rftop.fit(X[:200000], y[:200000])

In [20]: np.mean(rftop.predict(X[200000:]) == y[200000:])
Out[20]: 0.826125

That's more in line with what's expected for this dataset, and what was found by the search with 72K samples (top model: [mean: 0.82640, std: 0.00341, params: {'n_estimators': 500, 'bootstrap': False, 'max_features': 20, 'max_depth': 20, 'criterion': 'gini'},)

Anyway, here's my code, any idea why more samples would cause this overfitting / testing on training data?

# [omitted: boilerplate to load full data in X0, y0]
import numpy as np
idx = np.random.choice(len(y0), size=280000, replace=False)
X, y = X0[idx], y0[idx]
param_dist = {'n_estimators': [20, 100, 200, 500],
              'max_depth': [3, 5, 20, None],
              'max_features': ['auto', 5, 10, 20],
              'bootstrap': [True, False],
              'criterion': ['gini', 'entropy']}
from sklearn import grid_search as gs
from time import time
from sklearn import ensemble
rf = ensemble.RandomForestClassifier()
random_search = gs.GridSearchCV(rf, param_grid=param_dist, refit=False,
                                verbose=2, n_jobs=12)
start=time(); random_search.fit(X, y); stop=time()

Thank you!

Juan.


------------------------------------------------------------------------------
Transform Data into Opportunity.
Accelerate data analysis in your applications with
Intel Data Analytics Acceleration Library.
Click to learn more.
http://pubads.g.doubleclick.net/gampad/clk?id=278785111&iu=/4140


_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

------------------------------------------------------------------------------
Find and fix application performance issues faster with Applications Manager
Applications Manager provides deep performance insights into multiple tiers of
your business applications. It resolves application problems quickly and
reduces your MTTR. Get your free trial!
https://ad.doubleclick.net/ddm/clk/302982198;130105516;z
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to