Hi all,

I'm trying to use scikit-learn to do SV regression and this small data 
set causes it to crash every time. I can't even stop the process with 
CTRL+C and have to kill the process some other way. I've tested it on 
python 3.5 and 2.7.

Am I doing something wrong or should I report a bug?

Here's some copy-pastable code to reproduce the issue:

from sklearn.svm import SVR
import numpy as np

X=np.array([[    40.8      ],
        [ 21327.5900838],
        [ 28781.2890295],
        [ 29978.2941176],
        [ 30732.562406 ],
        [    40.8      ],
        [ 21327.5900838],
        [ 28781.2890295],
        [ 29978.2941176],
        [ 30732.562406 ],
        [    40.8      ],
        [ 21327.5900838],
        [ 28781.2890295],
        [ 29978.2941176],
        [ 30732.562406 ],
        [    40.8      ],
        [ 21327.5900838],
        [ 28781.2890295],
        [ 29978.2941176],
        [ 30732.562406 ],
        [    40.8      ],
        [ 21327.5900838],
        [ 28781.2890295],
        [ 29978.2941176],
        [ 30732.562406 ],
        [    40.8      ],
        [ 21327.5900838],
        [ 28781.2890295],
        [ 29978.2941176],
        [ 30732.562406 ],
        [    40.8      ],
        [ 21327.5900838],
        [ 28781.2890295],
        [ 29978.2941176],
        [ 30732.562406 ],
        [    40.8      ],
        [ 21327.5900838],
        [ 28781.2890295],
        [ 29978.2941176],
        [ 30732.562406 ],
        [    40.8      ],
        [ 21327.5900838],
        [ 28781.2890295],
        [ 29978.2941176],
        [ 30732.562406 ]])
y=np.array([ 0.1,  0.1,  0.1,  0.1,  0.1,  0.2,  0.2,  0.2,  0.2, 0.2,  
0.3,
         0.3,  0.3,  0.3,  0.3,  0.4,  0.4,  0.4,  0.4,  0.4,  0.5, 0.5,
         0.5,  0.5,  0.5,  0.6,  0.6,  0.6,  0.6,  0.6,  0.7,  0.7, 0.7,
         0.7,  0.7,  0.8,  0.8,  0.8,  0.8,  0.8,  0.9,  0.9,  0.9, 0.9,
         0.9])
weights=np.array([ 1.        ,  0.75      ,  1.        , 0.88867188,  
0.66650391,
         1.        ,  0.75      ,  1.        ,  0.88867188, 0.66650391,
         1.        ,  0.75      ,  1.        ,  0.88867188, 0.66650391,
         1.        ,  0.75      ,  1.        ,  0.88867188, 0.66650391,
         1.        ,  0.75      ,  1.        ,  0.88867188, 0.66650391,
         1.        ,  0.75      ,  1.        ,  0.88867188, 0.66650391,
         1.        ,  0.75      ,  1.        ,  0.88867188, 0.66650391,
         1.        ,  0.75      ,  1.        ,  0.88867188, 0.66650391,
         1.        ,  0.75      ,  1.        ,  0.88867188, 0.66650391], 
dtype=np.float16)

svr_poly = SVR(kernel='poly', C=1e3, degree=2)
fit = svr_poly.fit(X, y, weights)

-- Nicolas Cedilnik

PS: this is not the 'real' data I need the regression on.

------------------------------------------------------------------------------
Find and fix application performance issues faster with Applications Manager
Applications Manager provides deep performance insights into multiple tiers of
your business applications. It resolves application problems quickly and
reduces your MTTR. Get your free trial!
https://ad.doubleclick.net/ddm/clk/302982198;130105516;z
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to