Dear All,
I am trying to speed up the prediction of Random Forests. I've used 
compiledtress, which was useful, but since I have 6 models and once I've loaded 
all of them I got "Multiprocessing exception:" 

here is my models in the code:
...model1=joblib.load('/models/model1.pkl'') 
model2=joblib.load('/models/model2.pkl') 
model3=joblib.load('/models/model3.pkl') 
model4=compiledtrees.CompiledRegressionPredictor(joblib.load('/models/model4.pkl'))
 
model5=compiledtrees.CompiledRegressionPredictor(joblib.load('/models/model4.pkl'))
 
model6=compiledtrees.CompiledRegressionPredictor(joblib.load('/models/model4.pkl'))
 
model1=compiledtrees.CompiledRegressionPredictor(model1) 
model2=compiledtrees.CompiledRegressionPredictor(model2) 
model3=compiledtrees.CompiledRegressionPredictor(model3)....
Now I'm trying to use MultiOutputRegressor(RandomForestRegressor()), however, I 
could not find any tool to do model selection, can anyone help me either to 
solve the first problem or the second one
Best regards
_______________________________________________
scikit-learn mailing list
[email protected]
https://mail.python.org/mailman/listinfo/scikit-learn

Reply via email to