Hi, feature_log_prob_ is an array of size (n_classes, n_features).
exp(feature_log_prob_[class_ind, feature_ind]) gives P(X_{feature_ind} = 1 | class_ind)" Using the conditional independence assumptions of NaiveBayes, you can use this to sample each feature independently given the class. Hope that helps. On Mon, Oct 3, 2016 at 11:09 AM, klo uo <klo...@gmail.com> wrote: > On Mon, Oct 3, 2016 at 5:08 PM, klo uo <klo...@gmail.com> wrote: > >> I can see how can I sample from `feature_log_prob_`... >> > > I meant I cannot see > > > _______________________________________________ > scikit-learn mailing list > scikit-learn@python.org > https://mail.python.org/mailman/listinfo/scikit-learn > > -- Manoj, http://github.com/MechCoder
_______________________________________________ scikit-learn mailing list scikit-learn@python.org https://mail.python.org/mailman/listinfo/scikit-learn