Hi Maciek,

thank you very much! Numpy and opencv were indeed the conflicted packages.
Apperently my version of opencv was using numpy 1.10, so I uninstalled opencv, 
updated numpy and updated scikit to 0.18.

Thank's for the fast help!


Best regards,
Piotr

On 11.10.2016 14:39, Maciek Wójcikowski wrote:
Hi Piotr,

I've been there - most probably some package is blocking you to update via 
numpy dependency. Try to update numpy first and the conflicting package should 
pop up: "conda update numpy=1.11"

----
Pozdrawiam,  |  Best regards,
Maciek Wójcikowski
[email protected]<mailto:[email protected]>

2016-10-11 14:32 GMT+02:00 Piotr Bialecki 
<[email protected]<mailto:[email protected]>>:
Congratulations to all contributors!

I would like to update to the new version using conda, but apparently it is not 
available:

~$ conda update scikit-learn
Fetching package metadata .......
Solving package specifications: ..........

# All requested packages already installed.
# packages in environment at /home/pbialecki/anaconda2:
#
scikit-learn              0.17.1              np110py27_2

Should I reinstall scikit?


Best regards,
Piotr



On 03.10.2016 18:23, Raghav R V wrote:
Hi Brown,

Thanks for the email. There is a working PR here at 
https://github.com/scikit-learn/scikit-learn/pull/7388

Would you be kind to take a look at it and comment how helpful the proposed API 
is for your use case?

Thanks


On Mon, Oct 3, 2016 at 6:05 AM, Brown J.B. 
<[email protected]<mailto:[email protected]>> wrote:
Hello community,

Congratulations on the release of 0.19 !
While I'm merely a casual user and wish I could contribute more often, I thank 
everyone for their time and efforts!

2016-10-01 1:58 GMT+09:00 Andreas Mueller 
<[email protected]<mailto:[email protected]>>:

We've got a lot in the works already for 0.19.

* multiple metrics for cross validation (#7388 et al.)

I've done something like this in my internal model building and selection 
libraries.
My solution has been to have
  -each metric object be able to explain a "distance from optimal"
  -a metric collection object, which can be built by either explicit 
instantiation or calculation using data
  -a pareto curve calculation object
  -a ranker for the points on the pareto curve, with the ability to select the 
N-best points.

While there are certainly smarter interfaces and implementations, here is an 
example of one of my doctests that may help get this PR started.
My apologies that my old docstring argument notation doesn't match the commonly 
used standards.

Hope this helps,
J.B. Brown
Kyoto University

 26 class TrialRanker(object):
 27     """An object for handling the generic mechanism of selecting optimal
 28     trials from a colletion of trials."""

 43     def SelectBest(self, metricSets, paretoAlg,
 44                    preProcessor=None):
 45         """Select the best [metricSets] by using the
 46         [paretoAlg] pareto selection object.  Note that it is actually
 47         the [paretoAlg] that specifies how many optimal [metricSets] to
 48         select.
 49
 50         Data may be pre-processed into a form necessary for the [paretoAlg]
 51         by using the [preProcessor] that is a MetricSetConverter.
 52
 53         Return: an EvaluatedMetricSet if [paretoAlg] selects only one
 54         metric set, otherwise a list of EvaluatedMetricSet objects.
 55
 56         >>> from pareto.paretoDecorators import MinNormSelector
 57         >>> from pareto import OriginBasePareto
 58         >>> pAlg = MinNormSelector(OriginBasePareto())
 59
 60         >>> from metrics.TwoClassMetrics import Accuracy, Sensitivity
 61         >>> from metrics.metricSet import EvaluatedMetricSet
 62         >>> met1 = EvaluatedMetricSet.BuildByExplicitValue(
 63         ...           [(Accuracy, 0.7), (Sensitivity, 0.9)])
 64         >>> met1.SetTitle("Example1")
 65         >>> met1.associatedData = range(5)  # property set/get
 66         >>> met2 = EvaluatedMetricSet.BuildByExplicitValue(
 67         ...           [(Accuracy, 0.8), (Sensitivity, 0.6)])
 68         >>> met2.SetTitle("Example2")
 69         >>> met2.SetAssociatedData("abcdef")  # explicit method call
 70         >>> met3 = EvaluatedMetricSet.BuildByExplicitValue(
 71         ...           [(Accuracy, 0.5), (Sensitivity, 0.5)])
 72         >>> met3.SetTitle("Example3")
 73         >>> met3.associatedData = float
 74
 75         >>> from metrics.metricSet.converters import OptDistConverter
 76
 77         >>> ranker = TrialRanker()  # pAlg selects met1
 78         >>> best = ranker.SelectBest((met1,met2,met3),
 79         ...                          pAlg, OptDistConverter())
 80         >>> best.VerboseDescription(True)
 81         >>> str(best)
 82         'Example1: 2 metrics; Accuracy=0.700; Sensitivity=0.900'
 83         >>> best.associatedData
 84         [0, 1, 2, 3, 4]
 85
 86         >>> pAlg = MinNormSelector(OriginBasePareto(), nSelect=2)
 87         >>> best = ranker.SelectBest((met1,met2,met3),
 88         ...                          pAlg, OptDistConverter())
 89         >>> for metSet in best:
 90         ...     metSet.VerboseDescription(True)
 91         ...     str(metSet)
 92         ...     str(metSet.associatedData)
 93         'Example1: 2 metrics; Accuracy=0.700; Sensitivity=0.900'
 94         '[0, 1, 2, 3, 4]'
 95         'Example2: 2 metrics; Accuracy=0.800; Sensitivity=0.600'
 96         'abcdef'
 97
 98         >>> from metrics.TwoClassMetrics import PositivePredictiveValue
 99         >>> met4 = EvaluatedMetricSet.BuildByExplicitValue(
100         ...         [(Accuracy, 0.7), (PositivePredictiveValue, 0.5)])
101         >>> best = ranker.SelectBest((met1,met2,met3,met4),
102         ...                          pAlg, OptDistConverter())
103         Traceback (most recent call last):
104         ...
105         ValueError: Metric sets contain differing Metrics.




_______________________________________________
scikit-learn mailing list
[email protected]<mailto:[email protected]>
https://mail.python.org/mailman/listinfo/scikit-learn





_______________________________________________
scikit-learn mailing list
[email protected]<mailto:[email protected]>
https://mail.python.org/mailman/listinfo/scikit-learn


_______________________________________________ scikit-learn mailing list 
[email protected]<mailto:[email protected]> 
https://mail.python.org/mailman/listinfo/scikit-learn


_______________________________________________
scikit-learn mailing list
[email protected]<mailto:[email protected]>
https://mail.python.org/mailman/listinfo/scikit-learn

_______________________________________________
scikit-learn mailing list
[email protected]
https://mail.python.org/mailman/listinfo/scikit-learn

Reply via email to