HI all, I want to plot learning curves on a trained SVM classifier, using a custom scorer, and using Leave One Group Out as the method of crossvalidation. I thought I had it figured out, but two different scorers - 'f1_micro' and 'accuracy' - will yield identical values. I am confused, is that supposed to be the case?
Here's my code (unfortunately I cannot share the data as it is not open): from sklearn import svm SVC_classifier_LOWO_VC0 = svm.SVC(cache_size=800, class_weight=None, coef0=0.0, decision_function_shape=None, degree=3, gamma=0.01, kernel='rbf', max_iter=-1, probability=False, random_state=1, shrinking=True, tol=0.001, verbose=False) training_data = pd.read_csv('training_data.csv') scaler = preprocessing.StandardScaler().fit(X) X = scaler.transform(X) y = training_data['Targets'].values groups = training_data["Groups"].values Fscorer = make_scorer(f1_score, average = 'micro') logo = LeaveOneGroupOut() parm_range0 = np.logspace(-2, 6, 9) train_scores0, test_scores0 = validation_curve(SVC_classifier_LOWO_VC0, X, y, "C", parm_range0, cv =logo.split(X, y, groups=groups), scoring = Fscorer) Now, from: train_scores_mean0 = np.mean(train_scores0, axis=1) train_scores_std0 = np.std(train_scores0, axis=1) test_scores_mean0 = np.mean(test_scores0, axis=1) test_scores_std0 = np.std(test_scores0, axis=1) print test_scores_mean0 print np.amax(test_scores_mean0) print np.logspace(-2, 6, 9)[test_scores_mean0.argmax(axis=0)] I get: [ 0.20257407 0.35551122 0.40791047 0.49887676 0.5021742 0.50030438 0.49426622 0.48066419 0.4868987 ] 0.502174200206 100.0 If I create a new classifier, but with the same parameters, and run everything exactly as before, except for the scoring, e.g.: parm_range1 = np.logspace(-2, 6, 9) train_scores1, test_scores1 = validation_curve(SVC_classifier_LOWO_VC1, X, y, "C", parm_range1, cv =logo.split(X, y, groups=wells), scoring = 'accuracy') train_scores_mean1 = np.mean(train_scores1, axis=1) train_scores_std1= np.std(train_scores1, axis=1) test_scores_mean1 = np.mean(test_scores1, axis=1) test_scores_std1 = np.std(test_scores1, axis=1) print test_scores_mean1 print np.amax(test_scores_mean1) print np.logspace(-2, 6, 9)[test_scores_mean1.argmax(axis=0)] I get exactly the same answer: [ 0.20257407 0.35551122 0.40791047 0.49887676 0.5021742 0.50030438 0.49426622 0.48066419 0.4868987 ] 0.502174200206 100.0 How is that possible, am I doing something wrong, or missing something? Thanks _______________________________________________ scikit-learn mailing list scikit-learn@python.org https://mail.python.org/mailman/listinfo/scikit-learn