I tried the sklearn.neural_network.MLPClassifier with the default
parameters using the input data I quoted in my previous post about
Nu-Support Vector Classifier. The predictions are great but the problem is
that sometimes when I rerun the MLPClassifier it predicts no positive
observations (class 1). I have noticed that this can be controlled by the
random_state parameter, e.g. MLPClassifier(random_state=0) gives always no
positive predictions. My question is how can I chose the right random_state
value in a real blind test case?

thanks in advance
Thomas


-- 

======================================================================

Thomas Evangelidis

Research Specialist
CEITEC - Central European Institute of Technology
Masaryk University
Kamenice 5/A35/1S081,
62500 Brno, Czech Republic

email: tev...@pharm.uoa.gr

          teva...@gmail.com


website: https://sites.google.com/site/thomasevangelidishomepage/
_______________________________________________
scikit-learn mailing list
scikit-learn@python.org
https://mail.python.org/mailman/listinfo/scikit-learn

Reply via email to