I tried the sklearn.neural_network.MLPClassifier with the default parameters using the input data I quoted in my previous post about Nu-Support Vector Classifier. The predictions are great but the problem is that sometimes when I rerun the MLPClassifier it predicts no positive observations (class 1). I have noticed that this can be controlled by the random_state parameter, e.g. MLPClassifier(random_state=0) gives always no positive predictions. My question is how can I chose the right random_state value in a real blind test case?
thanks in advance Thomas -- ====================================================================== Thomas Evangelidis Research Specialist CEITEC - Central European Institute of Technology Masaryk University Kamenice 5/A35/1S081, 62500 Brno, Czech Republic email: tev...@pharm.uoa.gr teva...@gmail.com website: https://sites.google.com/site/thomasevangelidishomepage/
_______________________________________________ scikit-learn mailing list scikit-learn@python.org https://mail.python.org/mailman/listinfo/scikit-learn