Oh… totally forgot about that.. why -1?
> Den 16. mar. 2017 kl. 05.58 skrev Joel Nothman <joel.noth...@gmail.com>:
> 
> If you're using something like n_jobs=-1, that will explode memory usage in 
> proportion to the number of cores, and particularly so if you're passing the 
> data as a list rather than array and hence can't take advantage of memmapped 
> data parallelism.
> 
> On 16 March 2017 at 15:46, Carlton Banks <nofl...@gmail.com 
> <mailto:nofl...@gmail.com>> wrote:
> The ndarray (6,3,3) => (row, col,color channels)
> 
> I tried fixing it converting the list of numpy.ndarray to numpy.asarray(list)
> 
> but this causes a different problem:
> 
> is grid use a lot a memory.. I am running on a super computer, and seem to 
> have problems with memory.. already used 62 gb ram..
> 
> > Den 16. mar. 2017 kl. 05.30 skrev Sebastian Raschka <se.rasc...@gmail.com 
> > <mailto:se.rasc...@gmail.com>>:
> >
> > Sklearn estimators typically assume 2d inputs (as numpy arrays) with 
> > shape=[n_samples, n_features].
> >
> >> list of Np.ndarrays of shape (6,3,3)
> >
> > I assume you mean a 3D tensor (3D numpy array) with shape=[n_samples, 
> > n_pixels, n_pixels]? What you could do is to reshape it before you put it 
> > in, i.e.,
> >
> > data_ary = your_ary.reshape(n_samples, -1).shape
> >
> > then, you need to add a line at the beginning your CNN class that does the 
> > reverse, i.e., data_ary.reshape(6, n_pixels, n_pixels).shape. Numpy’s 
> > reshape typically returns view objects, so that these additional steps 
> > shouldn’t be “too” expensive.
> >
> > Best,
> > Sebastian
> >
> >
> >
> >> On Mar 16, 2017, at 12:00 AM, Carlton Banks <nofl...@gmail.com 
> >> <mailto:nofl...@gmail.com>> wrote:
> >>
> >> Hi…
> >>
> >> I currently trying to optimize my CNN model using gridsearchCV, but seem 
> >> to have some problems feading my input data..
> >>
> >> My training data is stored as a list of Np.ndarrays of shape (6,3,3) and 
> >> my output is stored as a list of np.array with one entry.
> >>
> >> Why am I having problems parsing my data to it?
> >>
> >> best regards
> >> Carl B.
> >> _______________________________________________
> >> scikit-learn mailing list
> >> scikit-learn@python.org <mailto:scikit-learn@python.org>
> >> https://mail.python.org/mailman/listinfo/scikit-learn 
> >> <https://mail.python.org/mailman/listinfo/scikit-learn>
> >
> > _______________________________________________
> > scikit-learn mailing list
> > scikit-learn@python.org <mailto:scikit-learn@python.org>
> > https://mail.python.org/mailman/listinfo/scikit-learn 
> > <https://mail.python.org/mailman/listinfo/scikit-learn>
> 
> _______________________________________________
> scikit-learn mailing list
> scikit-learn@python.org <mailto:scikit-learn@python.org>
> https://mail.python.org/mailman/listinfo/scikit-learn 
> <https://mail.python.org/mailman/listinfo/scikit-learn>
> 
> _______________________________________________
> scikit-learn mailing list
> scikit-learn@python.org
> https://mail.python.org/mailman/listinfo/scikit-learn

_______________________________________________
scikit-learn mailing list
scikit-learn@python.org
https://mail.python.org/mailman/listinfo/scikit-learn

Reply via email to