hmm.. guess I can give it a try.. i currently optimizing with for loops..
> Den 1. maj 2017 kl. 05.19 skrev Joel Nothman <joel.noth...@gmail.com>:
> 
> Unless I'm mistaken about what we're looking at, you could use something like:
> 
> class ToMultiInput(TransformerMixin, BaseEstimator):
>     def fit(self, shapes):
>         self.shapes = shapes
>     def transform(self, X):
>         return [X.]
> 
> tmi = ToMultiInput([single.shape for single in train_input])
> # this assumes that train_input is a sequence of ndarrays with the same first 
> dimension:
> train_input = np.hstack([single.reshape(single.shape[0], -1)
>                          for single in train_input])
> 
> GridSearchCV(make_pipeline(tmi, my_predictor), ...)
> 
> 
> On 1 May 2017 at 11:45, Carlton Banks <nofl...@gmail.com 
> <mailto:nofl...@gmail.com>> wrote:
> How …  batchsize could also be 1, I’ve just stored it like that.  
> 
> But how do reshape me data to be a matrix.. thats the big question.. is 
> possible?
> 
>> Den 1. maj 2017 kl. 02.21 skrev Joel Nothman <joel.noth...@gmail.com 
>> <mailto:joel.noth...@gmail.com>>:
>> 
>> Do each of your 33 inputs have a batch of size 100? If you reshape your data 
>> so that it all fits in one matrix, and then split it back out into its 33 
>> components as the first transformation in a Pipeline, there should be no 
>> problem.
>> 
>> On 1 May 2017 at 10:17, Joel Nothman <joel.noth...@gmail.com 
>> <mailto:joel.noth...@gmail.com>> wrote:
>> Sorry, I don't know enough about keras and its terminology.
>> 
>> Scikit-learn usually limits itself to datasets where features and targets 
>> are a rectangular matrix.
>> 
>> But grid search and other model selection tools should allow data of other 
>> shapes as long as they can be indexed on the first axis. You may be best 
>> off, however, getting support from the Keras folks.
>> 
>> On 30 April 2017 at 23:23, Carlton Banks <nofl...@gmail.com 
>> <mailto:nofl...@gmail.com>> wrote:
>> It seems like scikit-learn is not able to handle network with multiple 
>> inputs. 
>> Keras documentation states: 
>> 
>> You can use Sequential Keras models (single-input only) as part of your 
>> Scikit-Learn workflow via the wrappers found at 
>> keras.wrappers.scikit_learn.py <http://keras.wrappers.scikit_learn.py/>.
>> 
>> But besides what the wrapper can do.. can scikit-learn really not handle 
>> multiple inputs?.. 
>> 
>> 
>>> Den 30. apr. 2017 kl. 14.18 skrev Carlton Banks <nofl...@gmail.com 
>>> <mailto:nofl...@gmail.com>>:
>>> 
>>> The shapes are
>>> 
>>> print len(train_input)
>>> print train_input[0].shape
>>> print train_output.shape
>>> 
>>> 33
>>> (100, 8, 45, 3)
>>> (100, 1, 145)
>>> 
>>> 100 is the batch-size..
>>>> Den 30. apr. 2017 kl. 12.57 skrev Joel Nothman <joel.noth...@gmail.com 
>>>> <mailto:joel.noth...@gmail.com>>:
>>>> 
>>>> Scikit-learn should accept a list as X to grid search and index it just 
>>>> fine. So I'm not sure that constraint applies to Grid Search
>>>> 
>>>> On 30 April 2017 at 20:11, Julio Antonio Soto de Vicente <ju...@esbet.es 
>>>> <mailto:ju...@esbet.es>> wrote:
>>>> Tbh I've never tried, but I would say that te current sklearn API does not 
>>>> support multi-input data...
>>>> 
>>>> El 30 abr 2017, a las 12:02, Joel Nothman <joel.noth...@gmail.com 
>>>> <mailto:joel.noth...@gmail.com>> escribió:
>>>> 
>>>>> What are the shapes of train_input and train_output?
>>>>> 
>>>>> On 30 April 2017 at 12:59, Carlton Banks <nofl...@gmail.com 
>>>>> <mailto:nofl...@gmail.com>> wrote:
>>>>> I am currently trying to run some gridsearchCV on a keras model which has 
>>>>> multiple inputs. 
>>>>> The inputs is stored in a list in which each entry in the list is a input 
>>>>> for a specific channel. 
>>>>> 
>>>>> 
>>>>> Here is my model and how i use the gridsearch. 
>>>>> 
>>>>> https://pastebin.com/GMKH1L80 <https://pastebin.com/GMKH1L80>
>>>>> 
>>>>> The error i am getting is: 
>>>>> 
>>>>> https://pastebin.com/A3cB0rMv <https://pastebin.com/A3cB0rMv>
>>>>> 
>>>>> Any idea how i can resolve this?
>>>>> 
>>>>> 
>>>>> 
>>>>> _______________________________________________
>>>>> scikit-learn mailing list
>>>>> scikit-learn@python.org <mailto:scikit-learn@python.org>
>>>>> https://mail.python.org/mailman/listinfo/scikit-learn 
>>>>> <https://mail.python.org/mailman/listinfo/scikit-learn>
>>>>> 
>>>>> 
>>>>> _______________________________________________
>>>>> scikit-learn mailing list
>>>>> scikit-learn@python.org <mailto:scikit-learn@python.org>
>>>>> https://mail.python.org/mailman/listinfo/scikit-learn 
>>>>> <https://mail.python.org/mailman/listinfo/scikit-learn>
>>>> 
>>>> _______________________________________________
>>>> scikit-learn mailing list
>>>> scikit-learn@python.org <mailto:scikit-learn@python.org>
>>>> https://mail.python.org/mailman/listinfo/scikit-learn 
>>>> <https://mail.python.org/mailman/listinfo/scikit-learn>
>>>> 
>>>> 
>>>> _______________________________________________
>>>> scikit-learn mailing list
>>>> scikit-learn@python.org <mailto:scikit-learn@python.org>
>>>> https://mail.python.org/mailman/listinfo/scikit-learn 
>>>> <https://mail.python.org/mailman/listinfo/scikit-learn>
>>> 
>> 
>> 
>> _______________________________________________
>> scikit-learn mailing list
>> scikit-learn@python.org <mailto:scikit-learn@python.org>
>> https://mail.python.org/mailman/listinfo/scikit-learn 
>> <https://mail.python.org/mailman/listinfo/scikit-learn>
>> 
>> 
>> 
>> _______________________________________________
>> scikit-learn mailing list
>> scikit-learn@python.org <mailto:scikit-learn@python.org>
>> https://mail.python.org/mailman/listinfo/scikit-learn 
>> <https://mail.python.org/mailman/listinfo/scikit-learn>
> 
> 
> _______________________________________________
> scikit-learn mailing list
> scikit-learn@python.org <mailto:scikit-learn@python.org>
> https://mail.python.org/mailman/listinfo/scikit-learn 
> <https://mail.python.org/mailman/listinfo/scikit-learn>
> 
> 
> _______________________________________________
> scikit-learn mailing list
> scikit-learn@python.org
> https://mail.python.org/mailman/listinfo/scikit-learn

_______________________________________________
scikit-learn mailing list
scikit-learn@python.org
https://mail.python.org/mailman/listinfo/scikit-learn

Reply via email to