The original dataset contains both trainng/testing, I have predictions only on testing dataset. If I do what you suggest will it preserve indexing?
Thanks, Ruchika On Thu, Jul 20, 2017 at 11:37 AM, Julio Antonio Soto de Vicente < ju...@esbet.es> wrote: > Hi Ruchika, > > The predictions outputted by all sklearn models are just 1-d Numpy arrays, > so it should be trivial to add it to any existing DataFrame: > > your_df["prediction"] = clf.predict(X_test) > > -- > Julio > > El 20 jul 2017, a las 17:23, Ruchika Nayyar <ruchika.w...@gmail.com> > escribió: > > Hi Scikit-learn Users, > > I am analyzing some proxy logs to use Machine learning to classify the > events recorded as either "OBSERVED" or "BLOCKED". This is a little snippet > of my code: > The input file is a csv with tokenized string fields. > > ************** > # load the file > M = pd.read_csv("output100k.csv").fillna('') > > # define the fields to use > min_df = 0.001 > max_df = .7 > TxtCols = ['request__tokens', 'requestClientApplication__tokens', > 'destinationZoneURI__tokens','cs-categories__tokens', > 'fileType__tokens', 'requestMethod__tokens','tcp_status1', > 'app','tcp_status2','dhost' > ] > NumCols = ['rt', 'out', 'in', 'time-taken','rt_length', 'dt_length'] > > # vectorize the fields > TfidfModels = [TfidfVectorizer(min_df = min_df, max_df=max_df).fit(M[t]) > for t in TxtCols] > > # define the columns of sparse matrix > X = hstack([m.transform(M[n].fillna('')) for m,n in zip(TfidfModels, > TxtCols)] + \ > [csr_matrix(pd.to_numeric(M[n]).fillna(-1).values).T for n > in NumCols]) > > # target variable > Y = M.act.values > > ## Define train/test parts and scale them > X_train, X_test, y_train, y_test = tts(X, Y, test_size=0.2) > scaler = StandardScaler(with_mean=False, with_std=True) > scaler.fit(X_train) > X_train=scaler.transform(X_train) > X_test=scaler.transform(X_test) > > > # define the model and train > clf = MLPClassifier(activation='logistic', solver='lbfgs').fit(X_train,y_ > train) > # use the model to predict on X_test and convert into a data frame > df=pd.DataFrame(clf.predict(X_test)) > > ** > > 199845 OBSERVED > 199846 OBSERVED > > [199847 rows x 1 columns]> > > ** > > Now at the end I have a DataFrame with 20K entries with just one column > "Label", how di I connect it to the main dataframe M, since I want to do > some > investigations on this outcome ? > > Any help? > > Thanks, > Ruchika > > _______________________________________________ > scikit-learn mailing list > scikit-learn@python.org > https://mail.python.org/mailman/listinfo/scikit-learn > > > _______________________________________________ > scikit-learn mailing list > scikit-learn@python.org > https://mail.python.org/mailman/listinfo/scikit-learn > >
_______________________________________________ scikit-learn mailing list scikit-learn@python.org https://mail.python.org/mailman/listinfo/scikit-learn