The class weights and sample weights are used in the same way, as a factor
specific to each sample, in the loss function.
In LogisticRegression, it is equivalent to incorporate this factor into a
regularization parameter C specific to each sample.

Tom

2017-08-01 18:30 GMT+02:00 Johnson, Jeremiah <jeremiah.john...@unh.edu>:

> Right, I know how the class_weight calculation is performed. But then
> those class weights are utilized during the model fit process in some way
> in liblinear, and that¹s what I am interested in. libSVM does
> class_weight[I] * C (https://www.csie.ntu.edu.tw/~cjlin/libsvm/); is the
> implementation in liblinear the same?
>
> Best,
> Jeremiah
>
>
>
> On 8/1/17, 12:19 PM, "scikit-learn on behalf of Stuart Reynolds"
> <scikit-learn-bounces+jeremiah.johnson=unh....@python.org on behalf of
> stu...@stuartreynolds.net> wrote:
>
> >I hope not. And not accoring to the docs...
> >https://urldefense.proofpoint.com/v2/url?u=https-
> 3A__github.com_scikit-2Dl
> >earn_scikit-2Dlearn_blob_ab93d65_sklearn_linear-
> 5Fmodel_logistic.py-23L947
> >&d=DwIGaQ&c=c6MrceVCY5m5A_KAUkrdoA&r=hQNTLb4Jonm4n54VBW80WEzIAaqvTO
> cTEjhIk
> >rRJWXo&m=2XR2z3VWvEaERt4miGabDte3xkz_FwzMKMwnvEOWj8o&s=
> 4uJZS3EaQgysmQlzjt-
> >yuLkSlcXTd5G50LkEFMcbZLQ&e=
> >
> >class_weight : dict or 'balanced', optional
> >Weights associated with classes in the form ``{class_label: weight}``.
> >If not given, all classes are supposed to have weight one.
> >The "balanced" mode uses the values of y to automatically adjust
> >weights inversely proportional to class frequencies in the input data
> >as ``n_samples / (n_classes * np.bincount(y))``.
> >Note that these weights will be multiplied with sample_weight (passed
> >through the fit method) if sample_weight is specified.
> >
> >On Tue, Aug 1, 2017 at 9:03 AM, Johnson, Jeremiah
> ><jeremiah.john...@unh.edu> wrote:
> >> Hello all,
> >>
> >> I¹m looking for confirmation on an implementation detail that is
> >>somewhere
> >> in liblinear, but I haven¹t found documentation for yet. When the
> >> class_weights=Œbalanced¹ parameter is set in LogisticRegression, then
> >>the
> >> regularisation parameter for an observation from class I is
> >>class_weight[I]
> >> * C, where C is the usual regularization parameter ­ is this correct?
> >>
> >> Thanks,
> >> Jeremiah
> >>
> >>
> >> _______________________________________________
> >> scikit-learn mailing list
> >> scikit-learn@python.org
> >>
> >>https://urldefense.proofpoint.com/v2/url?u=https-
> 3A__mail.python.org_mail
> >>man_listinfo_scikit-2Dlearn&d=DwIGaQ&c=c6MrceVCY5m5A_
> KAUkrdoA&r=hQNTLb4Jo
> >>nm4n54VBW80WEzIAaqvTOcTEjhIkrRJWXo&m=2XR2z3VWvEaERt4miGabDte3xkz_
> FwzMKMwn
> >>vEOWj8o&s=MgZoI9VOHFh3omGKHTASFx3NAVjj6AY3j_75mnOUg04&e=
> >>
> >_______________________________________________
> >scikit-learn mailing list
> >scikit-learn@python.org
> >https://urldefense.proofpoint.com/v2/url?u=https-
> 3A__mail.python.org_mailm
> >an_listinfo_scikit-2Dlearn&d=DwIGaQ&c=c6MrceVCY5m5A_
> KAUkrdoA&r=hQNTLb4Jonm
> >4n54VBW80WEzIAaqvTOcTEjhIkrRJWXo&m=2XR2z3VWvEaERt4miGabDte3xkz_
> FwzMKMwnvEO
> >Wj8o&s=MgZoI9VOHFh3omGKHTASFx3NAVjj6AY3j_75mnOUg04&e=
>
> _______________________________________________
> scikit-learn mailing list
> scikit-learn@python.org
> https://mail.python.org/mailman/listinfo/scikit-learn
>
_______________________________________________
scikit-learn mailing list
scikit-learn@python.org
https://mail.python.org/mailman/listinfo/scikit-learn

Reply via email to