Hi Andy, Please find attached a Jupyter notebook showing exactly where the problem appears.
Best, Sam On Thu, Aug 17, 2017 at 4:03 PM, Andreas Mueller <t3k...@gmail.com> wrote: > Hi Sam. > > Can you say which test fails exactly and where (i.e. give traceback)? > The estimator checks are currently quite strict with respect to raising > helpful error messages. > That doesn't mean your estimator is broken (necessarily). > With a precomputed gram matrix, I expect the shape of X in predict to be > (n_samples_test, n_samples_train), right? > Does you estimator have a _pairwise attribute? (It should to work with > cross-validation, I'm not sure if it's > used in the estimator checks right now, but it should). > > Your feedback will help making check_estimator be more robust. I don't > think it's tested with anything that requires > "precomputed" kernels. > > Thanks > > Andy > > > On 08/17/2017 05:22 AM, Sam Barnett wrote: > > I am rolling classifier based on SVC which computes a custom Gram matrix > and runs this through the SVC classifier with kernel = 'precomputed'. While > this works fine with the fit method, I face a dilemma with the predict > method, shown here: > > > def predict(self, X): > """Run the predict method of the previously-instantiated SVM > classifier, returning the predicted classes for test set X.""" > > # Check is fit had been called > check_is_fitted(self, ['X_', 'y_']) > > # Input validation > X = check_array(X) > > cut_off = self.cut_ord_pair[0] > order = self.cut_ord_pair[1] > > X_gram = seq_kernel_free(X, self.X_, \ > pri_kernel=kernselect(self.kernel, self.coef0, self.gamma, > self.degree, self.scale), \ > cut_off=cut_off, order=order) > > X_gram = np.nan_to_num(X_gram) > > return self.ord_svc_.predict(X_gram) > > This will run on any dataset just fine. However, it fails the > check_estimator test. Specifically, when trying to raise an error for > malformed input on predict (in check_classifiers_train), it says that a > ValueError is not raised. Yet if I change the order of X and self.X_ in > seq_kernel_free (which computes the [n_samples_train, n_samples_test] Gram > matrix), it passes the check_estimator test yet fails to run the predict > method. > > How do I resolve both issues simultaneously? > > > > _______________________________________________ > scikit-learn mailing > listscikit-learn@python.orghttps://mail.python.org/mailman/listinfo/scikit-learn > > > > _______________________________________________ > scikit-learn mailing list > scikit-learn@python.org > https://mail.python.org/mailman/listinfo/scikit-learn > >
import numpy as np import pdb """assume m positive""" def shift( A,j,m): newA=np.roll(A, m, axis=j) for index, x in np.ndenumerate(newA): if (index[j]<m): newA[index]=0 return newA def getDiffMatrix(x, y, primary_kernel): shape = list([x.shape[0]-1, y.shape[0]-1]) left = np.zeros([shape[0], shape[0]+1]) right = np.zeros([shape[1]+1, shape[1]]) l = max(shape)+1 ones = np.diag(np.ones([l])) ones_up = np.diag(np.ones([l-1]), 1) ones_down = np.diag(np.ones([l-1]), -1) left += (ones-ones_up)[tuple(slice(0,n) for n in left.shape)] right += (ones-ones_down)[tuple(slice(0,n) for n in right.shape)] diff = np.zeros([shape[0]+1, shape[1]+1]) for i in range(shape[0]+1): for j in range(shape[1]+1): diff[i,j] = primary_kernel(x[i], y[j]) return np.dot(left, np.dot(diff, right)) def kernel(K,M,D): (lens,lent)=K.shape A=np.zeros( (M,lens,lent) ) A[0]=K for m in range(1,M): Q = np.cumsum(np.cumsum(A[m-1], axis=0), axis=1) Qshifted=shift(Q,0,1) Qshifted=shift(Qshifted,1,1) A[m]=K*(Qshifted+1) return 1+np.sum(A[M-1]) def kernelHO(K,M,D): (lens,lent)=K.shape B=np.zeros( (M,D,D,lens,lent) ) B[0,0,0]=K for m in range(1,M): D_=min(D,m) K1=np.sum(B[m-1],axis=0) K2=np.sum(K1,axis=0) K3=np.cumsum(np.cumsum(K2, axis=0), axis=1) K3shifted=shift(K3,0,1) K3shifted2=shift(K3shifted,1,1) B[m,0,0]=np.multiply(K,(K3shifted2+1)) for d in range(1,D_): K1=np.sum(B[m-1,d-1],axis=0) K2=np.cumsum(K1,axis=1) K2shifted=shift(K2,1,1) B[m,d,0]=np.divide(1,(d+1))*K*K2shifted K2_=np.sum(B[m-1],axis=0) K4_=np.cumsum(K2_[d-1],axis=0) K4shifted_=shift(K4_,0,1) B[m,0,d]=np.divide(1,(d+1))*K*K4shifted_ for d_ in range(1,D_): B[m,d,d_]+=np.divide(1,((d+1)*(d_+1)))*K*B[m-1,d-1,d_-1] return 1+np.sum(B[M-1]) def seq_kernel_free(A, B, pri_kernel=np.dot, cut_off=2, order=1, normalise=True): """Computes the cross-kernel matrix between datasets A, B, whose rows represent time series.""" gram_matrix = np.zeros( (A.shape[0], B.shape[0]) ) K_temp = np.zeros( (A.shape[1]-1, A.shape[1]-1) ) (kxx, kyy) = (float(0), float(0)) for row1ind in range(A.shape[0]): for row2ind in range(B.shape[0]): K_temp = getDiffMatrix(A[row1ind], B[row2ind], pri_kernel) gram_matrix[row1ind,row2ind] = kernelHO(K_temp, cut_off, order) if normalise == True: normfacx = np.zeros( (A.shape[0], 1) ) normfacy = np.zeros( (1, B.shape[0]) ) for row1ind in range(A.shape[0]): kxx = kernelHO(getDiffMatrix(A[row1ind], A[row1ind], pri_kernel), cut_off, order) normfacx[row1ind, 0] = kxx ** (-0.5) for row2ind in range(B.shape[0]): kyy = kernelHO(getDiffMatrix(B[row2ind], B[row2ind], pri_kernel), cut_off, order) normfacy[0, row2ind] = kyy ** (-0.5) normprod = np.dot(normfacx, normfacy) gram_matrix = np.multiply(gram_matrix, normprod) # if normalise == True: # normfacrow = np.zeros_like(gram_matrix) # normfaccol = np.zeros_like(gram_matrix) # for row1ind in range(A.shape[0]): # kxx = kernelHO(getDiffMatrix(A[row1ind], A[row1ind], pri_kernel), cut_off, order) # normfacrow[row1ind, :] = kxx ** (-0.5) # for row2ind in range(B.shape[0]): # kyy = kernelHO(getDiffMatrix(B[row2ind], B[row2ind], pri_kernel), cut_off, order) # normfaccol[:, row2ind] = kyy ** (-0.5) # gram_matrix = np.multiply(np.multiply(gram_matrix, normfacrow), normfaccol) return gram_matrix def seq_kernel_gram(A, pri_kernel=np.dot, cut_off=2, order=1, normalise=True): """Computes the cross-kernel matrix between datasets A, B, whose rows represent time series.""" gram_matrix = np.zeros( (A.shape[0], A.shape[0]) ) K_temp = np.zeros( (A.shape[1]-1, A.shape[1]-1) ) for row1ind in range(A.shape[0]): for row2ind in range(row1ind, A.shape[0]): K_temp = getDiffMatrix(A[row1ind], A[row2ind], pri_kernel) gram_matrix[row1ind,row2ind] = kernelHO(K_temp, cut_off, order) if normalise == True: normvec = np.power(np.diag(gram_matrix).reshape((A.shape[0],1)), -0.5) normfac = np.dot(normvec, normvec.T) gram_matrix = np.multiply(gram_matrix, normfac) # if normalise == True: # normfac = np.zeros_like(gram_matrix) # normprod = float(0) # for row1ind in range(A.shape[0]): # for row2ind in range(row1ind, A.shape[0]): # normprod = gram_matrix[row1ind,row1ind] * gram_matrix[row2ind, row2ind] # normfac[row1ind, row2ind] = normprod ** (-0.5) # gram_matrix = np.multiply(gram_matrix, normfac) # Speed-up, as Gram matrices are symmetric. gram_matrix += ( gram_matrix.T -np.diag(gram_matrix.diagonal()) ) return gram_matrix
SeqSVC Check Estimator Test.ipynb
Description: Binary data
import numpy as np from functools import partial import pdb from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.utils.validation import check_X_y, check_array, check_is_fitted from sklearn.utils.multiclass import unique_labels from sklearn.svm import SVC from sklearn.preprocessing import KernelCenterer from kernelsqizer import seq_kernel_free, seq_kernel_gram from timeseriestools import timeLagMult, timeIndexMult # LIST OF STANDARD PRESET KERNELS. def kPolynom(x,y,coef0=0,gamma=1,degree=1): return (coef0+gamma*np.inner(x,y))**degree def kGauss(x,y,scale=1,gamma=1): return scale * np.exp(-gamma*np.sum(np.square(x-y))) def kLinear(x,y,scale=1): return scale * np.inner(x,y) def kSigmoid(x,y,gamma=1,coef0=0): return np.tanh(gamma*np.inner(x,y) +coef0) def kernselect(kername, coef0, gamma, degree, scale): """If the input of kernselect is one of the listed strings, this function returns the corresponding function with the specified parameters. Otherwise, this function returns its input (one must still specify the now-redundant parameters). """ switcher = { 'linear': partial(kPolynom, coef0=coef0, gamma=gamma, degree=degree), 'rbf': partial(kGauss, scale=scale, gamma=gamma), 'sigmoid': partial(kLinear, scale=scale), 'poly': partial(kSigmoid, gamma=gamma, coef0=coef0), } return switcher.get(kername, kername) class TimeSeriesPreprocessor(object): """This class can be used reshape (and recover) higher-dimensional time series as 2D arrays for use in the scikit-learn interface. This class itself is NOT a scikit-learn estimator, and so cannot be placed in a pipeline. Parameters ---------- numfeatures: int The number of recordings in time for a single path realisation. """ def __init__(self, numfeatures): self.numfeatures = numfeatures def flattenData(self, data): highShape = data.shape return data.reshape( (highShape[0], np.prod(highShape[1:])) ) def recoverHighData(self, data): flatShape = data.shape last_dim = int(flatShape[1]/self.numfeatures) newShape = (flatShape[0], self.numfeatures, last_dim) return data.reshape(newShape) class SeqSVC(BaseEstimator, ClassifierMixin): """C-Support Vector Classification with Sequentialisation. The implementation is based on scikit-learn's svm.SVC. The fit time complexity is more than quadratic with the number of samples which makes it hard to scale to dataset with more than a couple of 10000 samples. The multiclass support is handled according to a one-vs-one scheme. For details on the precise mathematical formulation of the provided kernel functions and how `gamma`, `coef0` and `degree` affect each other, see the narrative documentation: :ref:`svm_kernels`. Read more in the :ref:`User Guide <svm_classification>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. kernel : string, optional (default='rbf') Specifies the base kernel type to be used in the sequentialising algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', or a callable. If none is given, 'rbf' will be used. If a callable is given its sequentialisation is used to pre-compute the kernel matrix from data matrices; that matrix should be an array of shape ``(n_samples, n_samples)``. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. probability : boolean, optional (default=False) Whether to enable probability estimates. This must be enabled prior to calling `fit`, and will slow down that method. shrinking : boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB). class_weight : {dict, 'balanced'}, optional Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. decision_function_shape : 'ovo', 'ovr' or None, default=None Whether to return a one-vs-rest ('ovr') decision function of shape (n_samples, n_classes) as all other classifiers, or the original one-vs-one ('ovo') decision function of libsvm which has shape (n_samples, n_classes * (n_classes - 1) / 2). The default of None will currently behave as 'ovo' for backward compatibility and raise a deprecation warning, but will change 'ovr' in 0.19. .. versionadded:: 0.17 *decision_function_shape='ovr'* is recommended. .. versionchanged:: 0.17 Deprecated *decision_function_shape='ovo' and None*. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data for probability estimation. scale : float, optional (default = 1) Kernel coefficient for Gaussian and linear primary kernels. cut_ord_pair : tuple (of ints), optional (default = (2, 1)) A tuple (M, D) representing the cut-off and order for the sequentialised of the kernel. This is introduced as a pair in order to prevent GridSearchCV from instantiating the classifier with the order value strictly greater than the cut-off value. n_iter_ : int, optional (default = 1) A redundant parameter that serves as a hacky fix in order to pass the check_estimator test. preprocess : string or int, optional (default = 0) Creates synthetic higher-dimensional time series out of a dataset of one-dimensional time-series. If input is an int > 0, then classifier uses 'lagged' version of dataset. If input is the str 'index', then classifier adds the time-index to each feature. For more information, see timeseriestools. Examples - ADD WHEN FINISHED -------- See also -------- SVC C-Support Vector Classification. """ def __init__(self, C=1.0, kernel='rbf', degree=3, gamma=1.0, \ coef0=0.0, shrinking=True, probability=False, tol=0.001, \ cache_size=200, class_weight=None, verbose=False, max_iter=-1, \ decision_function_shape=None, random_state=None, \ scale=1.0, cut_ord_pair=(2,1), preprocess=0): self.C = C self.shrinking = shrinking self.probability = probability self.tol = tol self.cache_size = cache_size self.class_weight = class_weight self.verbose = verbose self.max_iter = max_iter self.decision_function_shape = decision_function_shape self.random_state = random_state self.kernel = kernel self.degree = degree self.gamma = gamma self.coef0 = coef0 self.scale = scale self.cut_ord_pair = cut_ord_pair self.preprocess = preprocess def fit(self, X, y=None): """Instantiate a standard SVM classifier with sequentialised kernel and fit it to data-target pair X, y.""" self.n_iter_ = 1 # HACKY BUG FIX # Check that X and y have correct shape X, y = check_X_y(X, y) cut_off = self.cut_ord_pair[0] order = self.cut_ord_pair[1] # Store the classes seen during fit self.classes_ = unique_labels(y) self.X_ = np.array(X) self.y_ = np.array(y) self.input_shape_ = X.shape ts_preprocessor = TimeSeriesPreprocessor(X.shape[1]) if type(self.preprocess) == int and self.preprocess > 0: X_high = timeLagMult(X, self.preprocess) X = ts_preprocessor.flattenData(X_high) elif type(self.preprocess) == str and self.preprocess == 'index': X_high = timeIndexMult(X) X = ts_preprocessor.flattenData(X_high) else: pass X_gram = seq_kernel_gram(X, \ pri_kernel=kernselect(self.kernel, self.coef0, self.gamma, self.degree, self.scale), \ cut_off=cut_off, order=order) X_gram = np.nan_to_num(X_gram) self.ord_svc_ = SVC(C=self.C, \ kernel='precomputed', \ degree=self.degree, gamma=self.gamma, \ coef0=self.coef0, shrinking=self.shrinking, probability=self.probability, tol=self.tol, \ cache_size=self.cache_size, class_weight=self.class_weight, verbose=self.verbose, \ max_iter=self.max_iter, decision_function_shape=self.decision_function_shape, \ random_state=self.random_state) self.ord_svc_.fit(X_gram, y) return self def predict(self, X): """Run the predict method of the previously-instantiated SVM classifier, returning the predicted classes for test set X.""" # Check is fit had been called check_is_fitted(self, ['X_', 'y_']) # Input validation X = check_array(X) ts_preprocessor = TimeSeriesPreprocessor(X.shape[1]) if type(self.preprocess) == int and self.preprocess > 0: X_high = timeLagMult(X, self.preprocess) X = ts_preprocessor.flattenData(X_high) elif type(self.preprocess) == str and self.preprocess == 'index': X_high = timeIndexMult(X) X = ts_preprocessor.flattenData(X_high) else: pass cut_off = self.cut_ord_pair[0] order = self.cut_ord_pair[1] X_gram = seq_kernel_free(X, self.X_, \ pri_kernel=kernselect(self.kernel, self.coef0, self.gamma, self.degree, self.scale), \ cut_off=cut_off, order=order) X_gram = np.nan_to_num(X_gram) return self.ord_svc_.predict(X_gram)
import numpy as np def timeLag(vec, n): """Turns a one-dimensional array vec into a two-dimensional array s.t., if vec = [x_0, ..., x_{N-1}], the output is equal to [ [x_{-n}, ..., x_0], ..., [x_{N-1-n}, ..., x_{N-1}]]. If k-n < 0, then set x_{k-n} = x_0.""" # Initialise the lagged vector with zeros. vec_lag = np.zeros( (len(vec), n+1) ) vec_lag[:, n] = vec for ind in range(1, n+1): vec_lag[:, n-ind] = np.roll(vec, ind) vec_lag[0:ind, n-ind] = vec_lag[0,n] return vec_lag def timeIndex(vec): """Turns a one-dimensional array vec into a two-dimensional array s.t., if vec = [x_0, x_1, x_2, ...] the output is equal to [[x_0, 0], [x_1, 1], [x_2, 2], ...].""" vec_index = np.zeros( (len(vec), 2)) vec_index[:, 0] = vec vec_index[:, 1] = np.arange(len(vec)) return vec_index def timeLagMult(arr,n): """Performs timeLag on an array containing multiple vectors.""" arr_lag = np.zeros( (arr.shape[0], arr.shape[1], n+1)) for row_ind in range(arr.shape[0]): arr_lag[row_ind, :, :] = timeLag(arr[row_ind, :], n) return arr_lag def timeIndexMult(arr): """Performs timeIndex on an array containing multiple vectors.""" arr_index = np.zeros( (arr.shape[0], arr.shape[1], 2)) for row_ind in range(arr.shape[0]): arr_index[row_ind, :, :] = timeIndex(arr[row_ind, :]) return arr_index
_______________________________________________ scikit-learn mailing list scikit-learn@python.org https://mail.python.org/mailman/listinfo/scikit-learn