Merci beaucoup.‎ Super utile. J' ai d'ailleurs introduit ton module a la conference data intelligence a Capital One il y a moins de 2 mois ( en banlieue de Washington DC).

Sent from my BlackBerry 10 Darkphone
From: Guillaume Lemaître
Sent: Thursday, August 24, 2017 20:15
To: Scikit-learn user and developer mailing list
Reply To: Scikit-learn mailing list
Subject: [scikit-learn] imbalanced-learn 0.3.0 is chasing scikit-learn 0.19.0

We are excited to announce the new release of the scikit-learn-contrib imbalanced-learn, already available through conda and pip (cf. the installation page https://tinyurl.com/y92flbab for more info)

Notable add-ons are:

* Support of sparse matrices
* Support of multi-class resampling for all methods
* A new BalancedBaggingClassifier using random under-sampling chained with the scikit-learn BaggingClassifier
* Creation of a didactic user guide
* New API of the ratio parameter to fit the needs of multi-class resampling
* Migration from nosetests to pytest

You can check the full changelog at:

A big thank you to contributors to use, raise issues, and submit PRs to imblearn.
--
Guillaume Lemaitre

_______________________________________________
scikit-learn mailing list
scikit-learn@python.org
https://mail.python.org/mailman/listinfo/scikit-learn

Reply via email to