I think you want to call the radius_neighbors method (check here:
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html#sklearn.neighbors.NearestNeighbors.radius_neighbors)
(you're using kneighbors, replace with radius_neighbors)
~Shane
On 09/10, Martin Lee wrote:
nbrs =
NearestNeighbors(n_neighbors=10,radius=100.0,metric='euclidean',algorithm='ball_tree').fit(testing1)
distances, indices = nbrs.kneighbors(testing1)
just expect when each point distance less than 100 then group into one group
Martin
_______________________________________________
scikit-learn mailing list
scikit-learn@python.org
https://mail.python.org/mailman/listinfo/scikit-learn
--
*PhD candidate & Research Assistant*
*Cooperative Institute for Research in Environmental Sciences (CIRES)*
*University of Colorado at Boulder*
_______________________________________________
scikit-learn mailing list
scikit-learn@python.org
https://mail.python.org/mailman/listinfo/scikit-learn