I do multi-class classification on unbalanced classes. I'm using SGDClassifier(), GradientBoostingClassifier(), RandomForestClassifier(), and LogisticRegression()with class_weight='balanced'. To compare the results. it is required to compute the accuracy. I tried the following way to compute weighted accuracy:
n_samples = len(y_train) weights_cof = float(n_samples)/(n_classes*np.bincount(data[target_label].as_matrix().astype(int))[1:]) sample_weights = np.ones((n_samples,n_classes)) * weights_cof print accuracy_score(y_test, y_pred, sample_weight=sample_weights) y_train is a binary array. So sample_weights has the same shape as y_train (n_samples, n_classes). When I run the script, I received the following error: Traceback (most recent call last): File "C:\Program Files (x86)\JetBrains\PyCharm Community Edition 2016.3.2\helpers\pydev\pydevd.py", line 1596, in <module> globals = debugger.run(setup['file'], None, None, is_module) File "C:\Program Files (x86)\JetBrains\PyCharm Community Edition 2016.3.2\helpers\pydev\pydevd.py", line 974, in run pydev_imports.execfile(file, globals, locals) # execute the script File "D:/Destiny/DestinyScripts/MainLocationAware.py", line 424, in <module> predict_country(featuresDF, score, featuresLabel, country_sample_size, 'gbc') File "D:/Destiny/DestinyScripts/MainLocationAware.py", line 313, in predict_country print accuracy_score(y_test, y_pred, sample_weight=sample_weights) File "C:\ProgramData\Anaconda2\lib\site-packages\sklearn\metrics\classification.py", line 183, in accuracy_score return _weighted_sum(score, sample_weight, normalize) File "C:\ProgramData\Anaconda2\lib\site-packages\sklearn\metrics\classification.py", line 108, in _weighted_sum return np.average(sample_score, weights=sample_weight) File "C:\ProgramData\Anaconda2\lib\site-packages\numpy\lib\function_base.py", line 1124, in average "Axis must be specified when shapes of a and weights " TypeError: Axis must be specified when shapes of a and weights differ.
_______________________________________________ scikit-learn mailing list scikit-learn@python.org https://mail.python.org/mailman/listinfo/scikit-learn