Hi Joel - Conceptually, that makes sense. But when I assign n_values, I can't make it match the result when you don't specify them. See below. I used the number of unique levels per column.
>>> enc = OneHotEncoder(sparse=False) >>> test = enc.fit_transform([[7, 0, 3], [1, 2, 0], [0, 2, 1], [1, 0, 2]]) >>> test array([[0., 0., 1., 1., 0., 0., 0., 0., 1.], [0., 1., 0., 0., 1., 1., 0., 0., 0.], [1., 0., 0., 0., 1., 0., 1., 0., 0.], [0., 1., 0., 1., 0., 0., 0., 1., 0.]]) >>> enc = OneHotEncoder(sparse=False,n_values=[3,2,4]) >>> test = enc.fit_transform([[7, 0, 3], [1, 2, 0], [0, 2, 1], [1, 0, 2]]) >>> test array([[0., 0., 0., 1., 0., 0., 0., 1., 1.], [0., 1., 0., 0., 0., 2., 0., 0., 0.], [1., 0., 0., 0., 0., 1., 1., 0., 0.], [0., 1., 0., 1., 0., 0., 0., 1., 0.]]) Cheers, Sarah Cheers, Sarah On Mon, Feb 5, 2018 at 12:02 AM, Joel Nothman <joel.noth...@gmail.com> wrote: > If each input column is encoded as a value from 0 to the (number of > possible values for that column - 1) then n_values for that column should > be the highest value + 1, which is also the number of levels per column. > Does that make sense? > > Actually, I've realised there's a somewhat slow and unnecessary bit of > code in the one-hot encoder: where the COO matrix is converted to CSR. I > suspect this was done because most of our ML algorithms perform better on > CSR, or else to maintain backwards compatibility with an earlier > implementation. > > _______________________________________________ > scikit-learn mailing list > scikit-learn@python.org > https://mail.python.org/mailman/listinfo/scikit-learn > >
_______________________________________________ scikit-learn mailing list scikit-learn@python.org https://mail.python.org/mailman/listinfo/scikit-learn