While we keep working on the docs and figures, here is a little example you all can already run:
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression from sklearn.model_selection import GridSearchCV from pipegraph.pipeGraph import PipeGraphClassifier, Concatenator import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC from sklearn.neural_network import MLPClassifier iris = load_iris() X = iris.data y = iris.target scaler = MinMaxScaler() gaussian_nb = GaussianNB() svc = SVC() mlp = MLPClassifier() concatenator = Concatenator() steps = [('scaler', scaler), ('gaussian_nb', gaussian_nb), ('svc', svc), ('concat', concatenator), ('mlp', mlp)] connections = { 'scaler': {'X': 'X'}, 'gaussian_nb': {'X': ('scaler', 'predict'), 'y': 'y'}, 'svc': {'X': ('scaler', 'predict'), 'y': 'y'}, 'concat': {'X1': ('scaler', 'predict'), 'X2': ('gaussian_nb', 'predict'), 'X3': ('svc', 'predict')}, 'mlp': {'X': ('concat', 'predict'), 'y': 'y'} } param_grid = {'svc__C': [0.1, 0.5, 1.0], 'mlp__hidden_layer_sizes': [(3,), (6,), (9,),], 'mlp__max_iter': [5000, 10000]} pgraph = PipeGraphClassifier(steps=steps, connections=connections) grid_search_classifier = GridSearchCV(estimator=pgraph, param_grid=param_grid, refit=True) grid_search_classifier.fit(X, y) y_pred = grid_search_classifier.predict(X) grid_search_regressor.best_estimator_.get_params() --- 'predict' is the default output name. One of these days we will simplify the notation to simply the name of the node in case of default output names. Best wishes Manuel 2018-02-07 23:29 GMT+01:00 Andreas Mueller <t3k...@gmail.com>: > Thanks Manuel, that looks pretty cool. > Do you have a write-up about it? I don't entirely understand the > connections setup. > _______________________________________________ > scikit-learn mailing list > scikit-learn@python.org > https://mail.python.org/mailman/listinfo/scikit-learn >
_______________________________________________ scikit-learn mailing list scikit-learn@python.org https://mail.python.org/mailman/listinfo/scikit-learn