Dear all, I am new to scikit learn so please excuse my ignorance. Using GridsearchCV I am trying to optimize a DecisionTreeRegressor. The broader I make the parameter space, the worse the scoring gets.
Setting min_samples_split to range(2,10) gives me a neg_mean_squared_error of -0.04. When setting it to range(2,5) The score is -0.004. simple_tree =GridSearchCV(tree.DecisionTreeRegressor(random_state=42), n_jobs=4, param_grid={'min_samples_split': range(2, 10)}, scoring='neg_mean_squared_error', cv=10, refit='neg_mean_squared_error') simple_tree.fit(x_tr,y_tr).score(x_tr,y_tr) I expect an equal or more positive score for a more extensive grid search compared to the less extensive one. I would really appreciate your help! Kind regards, Andreas
_______________________________________________ scikit-learn mailing list scikit-learn@python.org https://mail.python.org/mailman/listinfo/scikit-learn