Dear all,

I am new to scikit learn so please excuse my ignorance. Using GridsearchCV I am 
trying to optimize a DecisionTreeRegressor. The broader I make the parameter 
space, the worse the scoring gets.

Setting min_samples_split to range(2,10) gives me a neg_mean_squared_error of 
-0.04. When setting it to range(2,5) The score is -0.004.

simple_tree =GridSearchCV(tree.DecisionTreeRegressor(random_state=42), 
n_jobs=4, param_grid={'min_samples_split': range(2, 10)}, 
scoring='neg_mean_squared_error', cv=10, refit='neg_mean_squared_error')

simple_tree.fit(x_tr,y_tr).score(x_tr,y_tr)


I expect an equal or more positive score for a more extensive grid search 
compared to the less extensive one.

I would really appreciate your help!

Kind regards,
Andreas
_______________________________________________
scikit-learn mailing list
scikit-learn@python.org
https://mail.python.org/mailman/listinfo/scikit-learn

Reply via email to