Congratulations !Bertrand Envoyé depuis mon smartphone Samsung Galaxy.
-------- Message d'origine --------De : Joel Nothman <joel.noth...@gmail.com> 
Date : 16/05/2019  10:03  (GMT+01:00) À : Scikit-learn user and developer 
mailing list <scikit-learn@python.org> Objet : [scikit-learn] ANN: scikit-learn 
0.21 released Thanks to the work of many, many contributors, we have released 
Scikit-learn 0.21. It is available from GitHub, PyPI and Conda-forge, but is 
not yet available on the Anaconda defaults channel.* Documentation at 
https://scikit-learn.org/0.21* Release Notes at 
https://scikit-learn.org/0.21/whats_new* Download source or wheels at 
https://pypi.org/project/scikit-learn/0.21rc2/* Install from conda-forge with 
`conda install -c conda-forge scikit-learn`Highlights include:* 
neighbors.NeighborhoodComponentsAnalysis for supervised metric learning, which 
learns a weighted euclidean distance for k-nearest neighbors. 
https://scikit-learn.org/0.21/modules/neighbors.html#nca* 
ensemble.HistGradientBoostingClassifier and 
ensemble.HistGradientBoostingRegressor: experimental implementations of 
efficient binned gradient boosting machines. 
https://scikit-learn.org/0.21/modules/ensemble.html#gradient-tree-boosting* 
impute.IterativeImputer: an experimental API for a non-trivial approach to 
missing value imputation. 
https://scikit-learn.org/0.21/modules/impute.html#multivariate-feature-imputation*
 cluster.OPTICS: a new density-based clustering algorithm. 
https://scikit-learn.org/0.21/modules/clustering.html#optics* better printing 
of estimators as strings, with an option to hide default parameters for 
compactness: 
https://scikit-learn.org/0.21/auto_examples/plot_changed_only_pprint_parameter.html*
 for estimator and library developers: a way to tag your estimator so that it 
can be treated appropriately with check_estimator. 
https://scikit-learn.org/0.21/developers/contributing.html#estimator-tagsThere 
are many other enhancements and fixes listed in the release notes 
(https://scikit-learn.org/0.21/whats_new).Please note that Scikit-learn has new 
dependencies. It requires:* joblib >= 0.11, which used to be vendored within 
Scikit-learn* OpenMP, unless the environment variable SKLEARN_NO_OPENMP=1 when 
the code is compiled (and cythonized)* Python >= 3.5. Installing Scikit-learn 
from Python 2 will continue to provide version 0.20.Thanks again to everyone 
who contributed and to our sponsors, who helped us to develop such a great set 
of features and fixes since version 0.20 in under 8 months.Happy Learning!From 
the Scikit-learn ]team.

_______________________________________________
scikit-learn mailing list
scikit-learn@python.org
https://mail.python.org/mailman/listinfo/scikit-learn

Reply via email to