Hello all, I hope I am writing to the correct mailing list about this issue that I am having. Please apologize me if I am not.
I am attempting to use a pipeline to feed an ensemble voting classifier as I want the ensemble learner to use models that train on different feature sets. For this purpose, I followed the tutorial available at [1]. Following is the code that I could develop so far. *y = df1.indexx = preprocessing.scale(df1)phy_features = ['A', 'B', 'C']phy_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler())])phy_processer = ColumnTransformer(transformers=[('phy', phy_transformer, phy_features)])fa_features = ['D', 'E', 'F']fa_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler())])fa_processer = ColumnTransformer(transformers=[('fa', fa_transformer, fa_features)])pipe_phy = Pipeline(steps=[('preprocessor', phy_processer ),('classifier', SVM)])pipe_fa = Pipeline(steps=[('preprocessor', fa_processer ),('classifier', SVM)])ens = VotingClassifier(estimators=[pipe_phy, pipe_fa])cv = KFold(n_splits=10, random_state=None, shuffle=True)for train_index, test_index in cv.split(x): x_train, x_test = x[train_index], x[test_index] y_train, y_test = y[train_index], y[test_index] ens.fit(x_train,y_train) print(ens.score(x_test, y_test))* However, when running the code, I am getting an error saying *TypeError: argument of type 'ColumnTransformer' is not iterable*, at the line *ens.fit(x_train,y_train).* What is the reason for this and how can I fix it? Thank you, Chamila
_______________________________________________ scikit-learn mailing list scikit-learn@python.org https://mail.python.org/mailman/listinfo/scikit-learn