Contours generally indicate a third variable - often a probability density. Kmeans doesn't provide density estimates, so what precisely would you want the contours to represent?
Andrew <~~~~~~~~~~~~~~~~~~~~~~~~~~~> J. Andrew Howe, PhD LinkedIn Profile <http://www.linkedin.com/in/ahowe42> ResearchGate Profile <http://www.researchgate.net/profile/John_Howe12/> Open Researcher and Contributor ID (ORCID) <http://orcid.org/0000-0002-3553-1990> Github Profile <http://github.com/ahowe42> Personal Website <http://www.andrewhowe.com> I live to learn, so I can learn to live. - me <~~~~~~~~~~~~~~~~~~~~~~~~~~~> On Wed, Dec 9, 2020 at 9:41 AM Mahmood Naderan <mahmood...@gmail.com> wrote: > Hi > I use the following code to highlight the cluster centers with some red > dots. > > kmeans = KMeans(n_clusters=6, init='k-means++', max_iter=100, n_init=10, > random_state=0) > pred_y = kmeans.fit_predict(a) > plt.scatter(a[:,0], a[:,1]) > plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], > s=100, c='red') > plt.show() > > I would like to know if it is possible to draw contours over the clusters. > Is there any way for that? > Please let me know if there is a function or option in KMeans. > > Regards, > Mahmood > > > _______________________________________________ > scikit-learn mailing list > scikit-learn@python.org > https://mail.python.org/mailman/listinfo/scikit-learn >
_______________________________________________ scikit-learn mailing list scikit-learn@python.org https://mail.python.org/mailman/listinfo/scikit-learn