
 SCons 2.3.1.alpha.yyyymmdd: User Guide

 Steven Knight

 SCons 2.3.1.alpha.yyyymmdd: User Guide

 	

 Preface

 	

 SCons Principles

 	

 A Caveat About This Guide’s Completeness

 	

 Acknowledgements

 	

 Contact

 	

 Building and Installing SCons

 	

 Installing Python

 	

 Installing SCons From Pre-Built Packages

 	

 Installing SCons on Red Hat (and Other RPM-based) Linux Systems

 	

 Installing SCons on Debian Linux Systems

 	

 Installing SCons on Windows Systems

 	

 Building and Installing SCons on Any System

 	

 Building and Installing Multiple Versions of SCons Side-by-Side

 	

 Installing SCons in Other Locations

 	

 Building and Installing SCons Without Administrative Privileges

 	

 Simple Builds

 	

 Building Simple C / C++ Programs

 	

 Building Object Files

 	

 Simple Java Builds

 	

 Cleaning Up After a Build

 	

 The SConstruct File

 	

 SConstruct Files Are Python Scripts

 	

 SCons Functions Are Order-Independent

 	

 Making the SCons Output Less Verbose

Preface
Thank you for taking the time to read about SCons. SCons is a next-generation software construction tool, or make tool–that is, a software utility for building software (or other files) and keeping built software up-to-date whenever the underlying input files change.
The most distinctive thing about SCons is that its configuration files are actually scripts, written in the Python programming language. This is in contrast to most alternative build tools, which typically invent a new language to configure the build. SCons still has a learning curve, of course, because you have to know what functions to call to set up your build properly, but the underlying syntax used should be familiar to anyone who has ever looked at a Python script.
Paradoxically, using Python as the configuration file format makes SCons easier for non-programmers to learn than the cryptic languages of other build tools, which are usually invented by programmers for other programmers. This is in no small part due to the consistency and readability that are hallmarks of Python. It just so happens that making a real, live scripting language the basis for the configuration files makes it a snap for more accomplished programmers to do more complicated things with builds, as necessary.
SCons Principles
There are a few overriding principles we try to live up to in designing and implementing SCons:
	Correctness
	First and foremost, by default, SCons guarantees a correct build even if it means sacrificing performance a little. We strive to guarantee the build is correct regardless of how the software being built is structured, how it may have been written, or how unusual the tools are that build it.

	Performance
	Given that the build is correct, we try to make SCons build software as quickly as possible. In particular, wherever we may have needed to slow down the default SCons behavior to guarantee a correct build, we also try to make it easy to speed up SCons through optimization options that let you trade off guaranteed correctness in all end cases for a speedier build in the usual cases.

	Convenience
	SCons tries to do as much for you out of the box as reasonable, including detecting the right tools on your system and using them correctly to build the software.

In a nutshell, we try hard to make SCons just “do the right thing” and build software correctly, with a minimum of hassles.

A Caveat About This Guide’s Completeness
One word of warning as you read through this Guide: Like too much Open Source software out there, the SCons documentation isn’t always kept up-to-date with the available features. In other words, there’s a lot that SCons can do that isn’t yet covered in this User’s Guide. (Come to think of it, that also describes a lot of proprietary software, doesn’t it?)
Although this User’s Guide isn’t as complete as we’d like it to be, our development process does emphasize making sure that the SCons man page is kept up-to-date with new features. So if you’re trying to figure out how to do something that SCons supports but can’t find enough (or any) information here, it would be worth your while to look at the man page to see if the information is covered there. And if you do, maybe you’d even consider contributing a section to the User’s Guide so the next person looking for that information won’t have to go through the same thing…?

Acknowledgements
SCons would not exist without a lot of help from a lot of people, many of whom may not even be aware that they helped or served as inspiration. So in no particular order, and at the risk of leaving out someone:
First and foremost, SCons owes a tremendous debt to Bob Sidebotham, the original author of the classic Perl-based Cons tool which Bob first released to the world back around 1996. Bob’s work on Cons classic provided the underlying architecture and model of specifying a build configuration using a real scripting language. My real-world experience working on Cons informed many of the design decisions in SCons, including the improved parallel build support, making Builder objects easily definable by users, and separating the build engine from the wrapping interface.
Greg Wilson was instrumental in getting SCons started as a real project when he initiated the Software Carpentry design competition in February 2000. Without that nudge, marrying the advantages of the Cons classic architecture with the readability of Python might have just stayed no more than a nice idea.
The entire SCons team have been absolutely wonderful to work with, and SCons would be nowhere near as useful a tool without the energy, enthusiasm and time people have contributed over the past few years. The “core team” of Chad Austin, Anthony Roach, Bill Deegan, Charles Crain, Steve Leblanc, Greg Noel, Gary Oberbrunner, Greg Spencer and Christoph Wiedemann have been great about reviewing my (and other) changes and catching problems before they get in the code base. Of particular technical note: Anthony’s outstanding and innovative work on the tasking engine has given SCons a vastly superior parallel build model; Charles has been the master of the crucial Node infrastructure; Christoph’s work on the Configure infrastructure has added crucial Autoconf-like functionality; and Greg has provided excellent support for Microsoft Visual Studio.
Special thanks to David Snopek for contributing his underlying “Autoscons” code that formed the basis of Christoph’s work with the Configure functionality. David was extremely generous in making this code available to SCons, given that he initially released it under the GPL and SCons is released under a less-restrictive MIT-style license.
Thanks to Peter Miller for his splendid change management system, Aegis, which has provided the SCons project with a robust development methodology from day one, and which showed me how you could integrate incremental regression tests into a practical development cycle (years before eXtreme Programming arrived on the scene).
And last, thanks to Guido van Rossum for his elegant scripting language, which is the basis not only for the SCons implementation, but for the interface itself.

Contact
The best way to contact people involved with SCons, including the author, is through the SCons mailing lists.
If you want to ask general questions about how to use SCons send email to users@scons.tigris.org.
If you want to contact the SCons development community directly, send email to dev@scons.tigris.org.
If you want to receive announcements about SCons, join the low-volume announce@scons.tigris.org mailing list.

Building and Installing SCons
This chapter will take you through the basic steps of installing SCons on your system, and building SCons if you don’t have a pre-built package available (or simply prefer the flexibility of building it yourself). Before that, however, this chapter will also describe the basic steps involved in installing Python on your system, in case that is necessary. Fortunately, both SCons and Python are very easy to install on almost any system, and Python already comes installed on many systems.
Installing Python
Because SCons is written in Python, you must obviously have Python installed on your system to use SCons. Before you try to install Python, you should check to see if Python is already available on your system by typing python -V (capital ‘V’) or python –version at your system’s command-line prompt.
 $ python -V
 Python 2.5.1

And on a Windows system with Python installed:
 C:\>python -V
 Python 2.5.1

If Python is not installed on your system, you will see an error message stating something like “command not found” (on UNIX or Linux) or “‘python’ is not recognized as an internal or external command, operable progam or batch file” (on Windows). In that case, you need to install Python before you can install SCons.
The standard location for information about downloading and installing Python is http://www.python.org/download/. See that page for information about how to download and install Python on your system.
SCons will work with any 2.x version of Python from 2.4 on; 3.0 and later are not yet supported. If you need to install Python and have a choice, we recommend using the most recent 2.x Python version available. Newer Pythons have significant improvements that help speed up the performance of SCons.

Installing SCons From Pre-Built Packages
SCons comes pre-packaged for installation on a number of systems, including Linux and Windows systems. You do not need to read this entire section, you should need to read only the section appropriate to the type of system you’re running on.
Installing SCons on Red Hat (and Other RPM-based) Linux Systems
SCons comes in RPM (Red Hat Package Manager) format, pre-built and ready to install on Red Hat Linux, Fedora, or any other Linux distribution that uses RPM. Your distribution may already have an SCons RPM built specifically for it; many do, including SUSE, Mandrake and Fedora. You can check for the availability of an SCons RPM on your distribution’s download servers, or by consulting an RPM search site like http://www.rpmfind.net/ or http://rpm.pbone.net/.
If your distribution supports installation via yum, you should be able to install SCons by running:
 # yum install scons

If your Linux distribution does not already have a specific SCons RPM file, you can download and install from the generic RPM provided by the SCons project. This will install the SCons script(s) in /usr/bin, and the SCons library modules in /usr/lib/scons.
To install from the command line, simply download the appropriate .rpm file, and then run:
 # rpm -Uvh scons-2.3.1.alpha.yyyymmdd-1.noarch.rpm

Or, you can use a graphical RPM package manager. See your package manager application’s documention for specific instructions about how to use it to install a downloaded RPM.

Installing SCons on Debian Linux Systems
Debian Linux systems use a different package management format that also makes it very easy to install SCons.
If your system is connected to the Internet, you can install the latest official Debian package by running:
 # apt-get install scons

Installing SCons on Windows Systems
SCons provides a Windows installer that makes installation extremely easy. Download the scons-2.3.1.alpha.yyyymmdd.win32.exe file from the SCons download page at http://www.scons.org/download.php. Then all you need to do is execute the file (usually by clicking on its icon in Windows Explorer). These will take you through a small sequence of windows that will install SCons on your system.

Building and Installing SCons on Any System
If a pre-built SCons package is not available for your system, then you can still easily build and install SCons using the native Python distutils package.
The first step is to download either the scons-2.3.1.alpha.yyyymmdd.tar.gz or scons-2.3.1.alpha.yyyymmdd.zip, which are available from the SCons download page at http://www.scons.org/download.html.
Unpack the archive you downloaded, using a utility like tar on Linux or UNIX, or WinZip on Windows. This will create a directory called scons-2.3.1.alpha.yyyymmdd, usually in your local directory. Then change your working directory to that directory and install SCons by executing the following commands:
 # cd scons-2.3.1.alpha.yyyymmdd
 # python setup.py install

This will build SCons, install the scons script in the python which is used to run the setup.py’s scripts directory (/usr/local/bin or C:\Python25\Scripts), and will install the SCons build engine in the corresponding library directory for the python used (/usr/local/lib/scons or C:\Python25\scons). Because these are system directories, you may need root (on Linux or UNIX) or Administrator (on Windows) privileges to install SCons like this.
Building and Installing Multiple Versions of SCons Side-by-Side
The SCons setup.py script has some extensions that support easy installation of multiple versions of SCons in side-by-side locations. This makes it easier to download and experiment with different versions of SCons before moving your official build process to a new version, for example.
To install SCons in a version-specific location, add the --version-lib option when you call setup.py:
 # python setup.py install --version-lib

This will install the SCons build engine in the /usr/lib/scons-2.3.1.alpha.yyyymmdd or C:\Python25\scons-2.3.1.alpha.yyyymmdd directory, for example.
If you use the --version-lib option the first time you install SCons, you do not need to specify it each time you install a new version. The SCons setup.py script will detect the version-specific directory name(s) and assume you want to install all versions in version-specific directories. You can override that assumption in the future by explicitly specifying the --standalone-lib option.

Installing SCons in Other Locations
You can install SCons in locations other than the default by specifying the --prefix= option:
 # python setup.py install --prefix=/opt/scons

This would install the scons script in /opt/scons/bin and the build engine in /opt/scons/lib/scons,
Note that you can specify both the --prefix= and the --version-lib options at the same type, in which case setup.py will install the build engine in a version-specific directory relative to the specified prefix. Adding --version-lib to the above example would install the build engine in /opt/scons/lib/scons-2.3.1.alpha.yyyymmdd.

Building and Installing SCons Without Administrative Privileges
If you don’t have the right privileges to install SCons in a system location, simply use the --prefix= option to install it in a location of your choosing. For example, to install SCons in appropriate locations relative to the user’s $HOME directory, the scons script in $HOME/bin and the build engine in $HOME/lib/scons, simply type:
 $ python setup.py install --prefix=$HOME

You may, of course, specify any other location you prefer, and may use the --version-lib option if you would like to install version-specific directories relative to the specified prefix.
This can also be used to experiment with a newer version of SCons than the one installed in your system locations. Of course, the location in which you install the newer version of the scons script ($HOME/bin in the above example) must be configured in your PATH variable before the directory containing the system-installed version of the scons script.

Simple Builds
In this chapter, you will see several examples of very simple build configurations using SCons, which will demonstrate how easy it is to use SCons to build programs from several different programming languages on different types of systems.
Building Simple C / C++ Programs
Here’s the famous “Hello, World!” program in C:
 int
 main()
 {
 printf("Hello, world!\n");
 }

And here’s how to build it using SCons. Enter the following into a file named SConstruct:
 Program('hello.c')

This minimal configuration file gives SCons two pieces of information: what you want to build (an executable program), and the input file from which you want it built (the hello.c file). Program is a builder_method, a Python call that tells SCons that you want to build an executable program.
That’s it. Now run the scons command to build the program. On a POSIX-compliant system like Linux or UNIX, you’ll see something like:
% scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
cc -o hello.o -c hello.c
cc -o hello hello.o
scons: done building targets.
On a Windows system with the Microsoft Visual C++ compiler, you’ll see something like:
C:\>scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
cl /Fohello.obj /c hello.c /nologo
link /nologo /OUT:hello.exe hello.obj
embedManifestExeCheck(target, source, env)
scons: done building targets.
First, notice that you only need to specify the name of the source file, and that SCons correctly deduces the names of the object and executable files to be built from the base of the source file name.
Second, notice that the same input SConstruct file, without any changes, generates the correct output file names on both systems: hello.o and hello on POSIX systems, hello.obj and hello.exe on Windows systems. This is a simple example of how SCons makes it extremely easy to write portable software builds.
(Note that we won’t provide duplicate side-by-side POSIX and Windows output for all of the examples in this guide; just keep in mind that, unless otherwise specified, any of the examples should work equally well on both types of systems.)

Building Object Files
The Program builder method is only one of many builder methods that SCons provides to build different types of files. Another is the Object builder method, which tells SCons to build an object file from the specified source file:
 Object('hello.c')

Now when you run the scons command to build the program, it will build just the hello.o object file on a POSIX system:
% scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
cc -o hello.o -c hello.c
scons: done building targets.
And just the hello.obj object file on a Windows system (with the Microsoft Visual C++ compiler):
C:\>scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
cl /Fohello.obj /c hello.c /nologo
scons: done building targets.

Simple Java Builds
SCons also makes building with Java extremely easy. Unlike the Program and Object builder methods, however, the Java builder method requires that you specify the name of a destination directory in which you want the class files placed, followed by the source directory in which the .java files live:
 Java('classes', 'src')

If the src directory contains a single hello.java file, then the output from running the scons command would look something like this (on a POSIX system):
% scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
javac -d classes -sourcepath src src/hello.java
scons: done building targets.
We’ll cover Java builds in more detail, including building Java archive (.jar) and other types of file, in ?.

Cleaning Up After a Build
When using SCons, it is unnecessary to add special commands or target names to clean up after a build. Instead, you simply use the -c or --clean option when you invoke SCons, and SCons removes the appropriate built files. So if we build our example above and then invoke scons -c afterwards, the output on POSIX looks like:
% scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
cc -o hello.o -c hello.c
cc -o hello hello.o
scons: done building targets.
% scons -c
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Cleaning targets ...
Removed hello.o
Removed hello
scons: done cleaning targets.
And the output on Windows looks like:
C:\>scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
cl /Fohello.obj /c hello.c /nologo
link /nologo /OUT:hello.exe hello.obj
embedManifestExeCheck(target, source, env)
scons: done building targets.
C:\>scons -c
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Cleaning targets ...
Removed hello.obj
Removed hello.exe
scons: done cleaning targets.
Notice that SCons changes its output to tell you that it is Cleaning targets ... and done cleaning targets.

The SConstruct File
If you’re used to build systems like Make you’ve already figured out that the SConstruct file is the SCons equivalent of a Makefile. That is, the SConstruct file is the input file that SCons reads to control the build.
SConstruct Files Are Python Scripts
There is, however, an important difference between an SConstruct file and a Makefile: the SConstruct file is actually a Python script. If you’re not already familiar with Python, don’t worry. This User’s Guide will introduce you step-by-step to the relatively small amount of Python you’ll need to know to be able to use SCons effectively. And Python is very easy to learn.
One aspect of using Python as the scripting language is that you can put comments in your SConstruct file using Python’s commenting convention; that is, everything between a ‘#’ and the end of the line will be ignored:
 # Arrange to build the "hello" program.
 Program('hello.c') # "hello.c" is the source file.

You’ll see throughout the remainder of this Guide that being able to use the power of a real scripting language can greatly simplify the solutions to complex requirements of real-world builds.

SCons Functions Are Order-Independent
One important way in which the SConstruct file is not exactly like a normal Python script, and is more like a Makefile, is that the order in which the SCons functions are called in the SConstruct file does not affect the order in which SCons actually builds the programs and object files you want it to build.1 In other words, when you call the Program builder (or any other builder method), you’re not telling SCons to build the program at the instant the builder method is called. Instead, you’re telling SCons to build the program that you want, for example, a program built from a file named hello.c, and it’s up to SCons to build that program (and any other files) whenever it’s necessary. (We’ll learn more about how SCons decides when building or rebuilding a file is necessary in ?, below.)
SCons reflects this distinction between calling a builder method like Program and actually building the program by printing the status messages that indicate when it’s “just reading” the SConstruct file, and when it’s actually building the target files. This is to make it clear when SCons is executing the Python statements that make up the SConstruct file, and when SCons is actually executing the commands or other actions to build the necessary files.
Let’s clarify this with an example. Python has a print statement that prints a string of characters to the screen. If we put print statements around our calls to the Program builder method:
 print "Calling Program('hello.c')"
 Program('hello.c')
 print "Calling Program('goodbye.c')"
 Program('goodbye.c')
 print "Finished calling Program()"

Then when we execute SCons, we see the output from the print statements in between the messages about reading the SConscript files, indicating that that is when the Python statements are being executed:
% scons
scons: Reading SConscript files ...
Calling Program('hello.c')
Calling Program('goodbye.c')
Finished calling Program()
scons: done reading SConscript files.
scons: Building targets ...
cc -o goodbye.o -c goodbye.c
cc -o goodbye goodbye.o
cc -o hello.o -c hello.c
cc -o hello hello.o
scons: done building targets.
Notice also that SCons built the goodbye program first, even though the “reading SConscript” output shows that we called Program('hello.c') first in the SConstruct file.

Making the SCons Output Less Verbose
You’ve already seen how SCons prints some messages about what it’s doing, surrounding the actual commands used to build the software:
C:\>scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
cl /Fohello.obj /c hello.c /nologo
link /nologo /OUT:hello.exe hello.obj
embedManifestExeCheck(target, source, env)
scons: done building targets.
These messages emphasize the order in which SCons does its work: all of the configuration files (generically referred to as SConscript files) are read and executed first, and only then are the target files built. Among other benefits, these messages help to distinguish between errors that occur while the configuration files are read, and errors that occur while targets are being built.
One drawback, of course, is that these messages clutter the output. Fortunately, they’re easily disabled by using the -Q option when invoking SCons:
C:\>scons -Q
cl /Fohello.obj /c hello.c /nologo
link /nologo /OUT:hello.exe hello.obj
embedManifestExeCheck(target, source, env)
Because we want this User’s Guide to focus on what SCons is actually doing, we’re going to use the -Q option to remove these messages from the output of all the remaining examples in this Guide.

	In programming parlance, the SConstruct file is declarative, meaning you tell SCons what you want done and let it figure out the order in which to do it, rather than strictly imperative, where you specify explicitly the order in which to do things.↩

