[ 
https://issues.apache.org/jira/browse/HBASE-13408?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14802971#comment-14802971
 ] 

Eric Owhadi commented on HBASE-13408:
-------------------------------------

Question on re-using the in-memory attribute: let’s imagine the use case of an 
online cart where people keep adding, deleting, updating quantity before 
submitting the order. That use case will love this patch. But if we also have 
some processes doing daily or weekly statistics, or simply users performing 
“what did I buy over the last 6 months”, but very infrequently, this will 
trigger population of old data in block cache with in-memory stickiness, even 
if the use case going back in time are not important enough to consume valuable 
block cache resources with in-memory stickiness?

> HBase In-Memory Memstore Compaction
> -----------------------------------
>
>                 Key: HBASE-13408
>                 URL: https://issues.apache.org/jira/browse/HBASE-13408
>             Project: HBase
>          Issue Type: New Feature
>            Reporter: Eshcar Hillel
>             Fix For: 2.0.0
>
>         Attachments: HBASE-13408-trunk-v01.patch, 
> HBASE-13408-trunk-v02.patch, HBASE-13408-trunk-v03.patch, 
> HBaseIn-MemoryMemstoreCompactionDesignDocument-ver02.pdf, 
> HBaseIn-MemoryMemstoreCompactionDesignDocument.pdf, 
> InMemoryMemstoreCompactionEvaluationResults.pdf, 
> InMemoryMemstoreCompactionScansEvaluationResults.pdf
>
>
> A store unit holds a column family in a region, where the memstore is its 
> in-memory component. The memstore absorbs all updates to the store; from time 
> to time these updates are flushed to a file on disk, where they are 
> compacted. Unlike disk components, the memstore is not compacted until it is 
> written to the filesystem and optionally to block-cache. This may result in 
> underutilization of the memory due to duplicate entries per row, for example, 
> when hot data is continuously updated. 
> Generally, the faster the data is accumulated in memory, more flushes are 
> triggered, the data sinks to disk more frequently, slowing down retrieval of 
> data, even if very recent.
> In high-churn workloads, compacting the memstore can help maintain the data 
> in memory, and thereby speed up data retrieval. 
> We suggest a new compacted memstore with the following principles:
> 1.    The data is kept in memory for as long as possible
> 2.    Memstore data is either compacted or in process of being compacted 
> 3.    Allow a panic mode, which may interrupt an in-progress compaction and 
> force a flush of part of the memstore.
> We suggest applying this optimization only to in-memory column families.
> A design document is attached.
> This feature was previously discussed in HBASE-5311.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

Reply via email to