AW: [RFC PATCH 1/6] crypto: sha512: implement base layer for SHA-512

2015-03-29 Thread Markus Stockhausen
> Von: Ard Biesheuvel [ard.biesheu...@linaro.org]
> Gesendet: Sonntag, 29. März 2015 12:38
> An: Markus Stockhausen
> Cc: linux-arm-ker...@lists.infradead.org; linux-crypto@vger.kernel.org; 
> samitolva...@google.com; herb...@gondor.apana.org.au; jussi.kivili...@iki.fi
> Betreff: Re: [RFC PATCH 1/6] crypto: sha512: implement base layer for SHA-512
> 
>>> ...
>>> +int sha512_base_do_update(struct shash_desc *desc, const u8 *data,
>>> + unsigned int len, sha512_block_fn *block_fn, void 
>>> *p)
>>> +{
>>> +   struct sha512_state *sctx = shash_desc_ctx(desc);
>>> +   unsigned int partial = sctx->count[0] % SHA512_BLOCK_SIZE;
>>> +
>>> +   sctx->count[0] += len;
>>> +   if (sctx->count[0] < len)
>>> +   sctx->count[1]++;
>>>
>> You should check if early kick out at this point if the buffer won't be 
>> filled up
>> is faster than first taking care about big data. That can improve performance
>> for small blocks while large blocks might be unaffected.
>>
>>> +
>>> +   if ((partial + len) >= SHA512_BLOCK_SIZE) {
>
>Isn't this early kickout? The if is only entered if there is enough
>data to run the block function, otherwise it is a straight memcpy. I
>could add an unlikely() here to favor the small data case

I did my tests only on low end hardware. 32bit PPC e500 single core 800MHz
256K cache. Maybe it prefers early return statements. 

Additionally I ended up clearing the context in the finish function with a 
simple inlined 32bit writes loop. Everything else (e.g. memzero) resulted in 
slower processing. Don't know what your clearing syntax will produce after
compilation.

Markus

Diese E-Mail enthält vertrauliche und/oder rechtlich geschützte
Informationen. Wenn Sie nicht der richtige Adressat sind oder diese E-Mail
irrtümlich erhalten haben, informieren Sie bitte sofort den Absender und
vernichten Sie diese Mail. Das unerlaubte Kopieren sowie die unbefugte
Weitergabe dieser Mail ist nicht gestattet.

Über das Internet versandte E-Mails können unter fremden Namen erstellt oder
manipuliert werden. Deshalb ist diese als E-Mail verschickte Nachricht keine
rechtsverbindliche Willenserklärung.

Collogia
Unternehmensberatung AG
Ubierring 11
D-50678 Köln

Vorstand:
Kadir Akin
Dr. Michael Höhnerbach

Vorsitzender des Aufsichtsrates:
Hans Kristian Langva

Registergericht: Amtsgericht Köln
Registernummer: HRB 52 497

This e-mail may contain confidential and/or privileged information. If you
are not the intended recipient (or have received this e-mail in error)
please notify the sender immediately and destroy this e-mail. Any
unauthorized copying, disclosure or distribution of the material in this
e-mail is strictly forbidden.

e-mails sent over the internet may have been written under a wrong name or
been manipulated. That is why this message sent as an e-mail is not a
legally binding declaration of intention.

Collogia
Unternehmensberatung AG
Ubierring 11
D-50678 Köln

executive board:
Kadir Akin
Dr. Michael Höhnerbach

President of the supervisory board:
Hans Kristian Langva

Registry office: district court Cologne
Register number: HRB 52 497




Re: [RFC PATCH 1/6] crypto: sha512: implement base layer for SHA-512

2015-03-29 Thread Ard Biesheuvel
On 29 March 2015 at 10:29, Markus Stockhausen  wrote:
>> Von: linux-crypto-ow...@vger.kernel.org 
>> [linux-crypto-ow...@vger.kernel.org]" im Auftrag von "Ard 
>> Biesheuvel [ard.biesheu...@linaro.org]
>> Gesendet: Samstag, 28. März 2015 23:10
>> An: linux-arm-ker...@lists.infradead.org; linux-crypto@vger.kernel.org; 
>> samitolva...@google.com; herb...@gondor.apana.org.au; jussi.kivili...@iki.fi
>> Cc: Ard Biesheuvel
>> Betreff: [RFC PATCH 1/6] crypto: sha512: implement base layer for SHA-512
>>
>> To reduce the number of copies of boilerplate code throughout
>> the tree, this patch implements generic glue for the SHA-512
>> algorithm. This allows a specific arch or hardware implementation
>> to only implement the special handling that it needs.
>
> Hi Ard,
>
> Implementing a common layer is a very good idea - I didn't like to
> implement the glue code once again for some recently developed
> PPC crypto modules. From my very short crypto experience I was
> surprised that my optimized implementations degraded disproportional
> for small calculations in the <=256byte update scenarios in contrast to
> some very old basic implementations. Below you will find some hints,
> that might fit your implementation too. Thus all new implementations
> based on your framework could benefit immediately.
>

Thanks for taking a look!

>> ...
>> +int sha384_base_init(struct shash_desc *desc)
>> +{
>> +   struct sha512_state *sctx = shash_desc_ctx(desc);
>> +
>> +   *sctx = (struct sha512_state){
>> +   .state = {
>> +   SHA384_H0, SHA384_H1, SHA384_H2, SHA384_H3,
>> +   SHA384_H4, SHA384_H5, SHA384_H6, SHA384_H7,
>> +   }
>> +   };
>> +   return 0;
>> +}
>
> IIRC the above code will initialize the whole context including the 64/128
> byte buffer. Direct assignment of the 8 hashes was faster in my case.
>

Ah, I missed that. I will change it.

>> ...
>> +int sha512_base_do_update(struct shash_desc *desc, const u8 *data,
>> + unsigned int len, sha512_block_fn *block_fn, void 
>> *p)
>> +{
>> +   struct sha512_state *sctx = shash_desc_ctx(desc);
>> +   unsigned int partial = sctx->count[0] % SHA512_BLOCK_SIZE;
>> +
>> +   sctx->count[0] += len;
>> +   if (sctx->count[0] < len)
>> +   sctx->count[1]++;
>
> You should check if early kick out at this point if the buffer won't be 
> filled up
> is faster than first taking care about big data. That can improve performance
> for small blocks while large blocks might be unaffected.
>
>> +
>> +   if ((partial + len) >= SHA512_BLOCK_SIZE) {

Isn't this early kickout? The if is only entered if there is enough
data to run the block function, otherwise it is a straight memcpy. I
could add an unlikely() here to favor the small data case


>> +   int blocks;
>> +
>> +   if (partial) {
>> +   int p = SHA512_BLOCK_SIZE - partial;
>> +
>> +   memcpy(sctx->buf + partial, data, p);
>> +   data += p;
>> +   len -= p;
>> +   }
>> +
>> +   blocks = len / SHA512_BLOCK_SIZE;
>> +   len %= SHA512_BLOCK_SIZE;
>> +
>> +   block_fn(blocks, data, sctx->state,
>> +partial ? sctx->buf : NULL, p);
>> +   data += blocks * SHA512_BLOCK_SIZE;
>> +   partial = 0;
>> +   }
>> +   if (len)
>> +   memcpy(sctx->buf + partial, data, len);
>> +
>> +   return 0;
>> +}
>> +EXPORT_SYMBOL(sha512_base_do_update);
>> +
>> +int sha512_base_do_finalize(struct shash_desc *desc, sha512_block_fn 
>> *block_fn,
>> +   void *p)
>> +{
>> +   static const u8 padding[SHA512_BLOCK_SIZE] = { 0x80, };
>> +
>> +   struct sha512_state *sctx = shash_desc_ctx(desc);
>> +   unsigned int padlen;
>> +   __be64 bits[2];
>> +
>> +   padlen = SHA512_BLOCK_SIZE -
>> +(sctx->count[0] + sizeof(bits)) % SHA512_BLOCK_SIZE;
>> +
>> +   bits[0] = cpu_to_be64(sctx->count[1] << 3 |
>> + sctx->count[0] >> 61);
>> +   bits[1] = cpu_to_be64(sctx->count[0] << 3);
>> +
>> +   sha512_base_do_update(desc, padding, padlen, block_fn, p);
>
> I know that this is the most i

AW: [RFC PATCH 1/6] crypto: sha512: implement base layer for SHA-512

2015-03-29 Thread Markus Stockhausen
> Von: linux-crypto-ow...@vger.kernel.org 
> [linux-crypto-ow...@vger.kernel.org]" im Auftrag von "Ard 
> Biesheuvel [ard.biesheu...@linaro.org]
> Gesendet: Samstag, 28. März 2015 23:10
> An: linux-arm-ker...@lists.infradead.org; linux-crypto@vger.kernel.org; 
> samitolva...@google.com; herb...@gondor.apana.org.au; jussi.kivili...@iki.fi
> Cc: Ard Biesheuvel
> Betreff: [RFC PATCH 1/6] crypto: sha512: implement base layer for SHA-512
> 
> To reduce the number of copies of boilerplate code throughout
> the tree, this patch implements generic glue for the SHA-512
> algorithm. This allows a specific arch or hardware implementation
> to only implement the special handling that it needs.

Hi Ard,

Implementing a common layer is a very good idea - I didn't like to 
implement the glue code once again for some recently developed 
PPC crypto modules. From my very short crypto experience I was 
surprised that my optimized implementations degraded disproportional 
for small calculations in the <=256byte update scenarios in contrast to 
some very old basic implementations. Below you will find some hints, 
that might fit your implementation too. Thus all new implementations 
based on your framework could benefit immediately.

> ...
> +int sha384_base_init(struct shash_desc *desc)
> +{
> +   struct sha512_state *sctx = shash_desc_ctx(desc);
> +
> +   *sctx = (struct sha512_state){
> +   .state = {
> +   SHA384_H0, SHA384_H1, SHA384_H2, SHA384_H3,
> +   SHA384_H4, SHA384_H5, SHA384_H6, SHA384_H7,
> +   }
> +   };
> +   return 0;
> +}

IIRC the above code will initialize the whole context including the 64/128
byte buffer. Direct assignment of the 8 hashes was faster in my case. 

> ...
> +int sha512_base_do_update(struct shash_desc *desc, const u8 *data,
> + unsigned int len, sha512_block_fn *block_fn, void 
> *p)
> +{
> +   struct sha512_state *sctx = shash_desc_ctx(desc);
> +   unsigned int partial = sctx->count[0] % SHA512_BLOCK_SIZE;
> +
> +   sctx->count[0] += len;
> +   if (sctx->count[0] < len)
> +   sctx->count[1]++;

You should check if early kick out at this point if the buffer won't be filled 
up
is faster than first taking care about big data. That can improve performance
for small blocks while large blocks might be unaffected.

> +
> +   if ((partial + len) >= SHA512_BLOCK_SIZE) {
> +   int blocks;
> +
> +   if (partial) {
> +   int p = SHA512_BLOCK_SIZE - partial;
> +
> +   memcpy(sctx->buf + partial, data, p);
> +   data += p;
> +   len -= p;
> +   }
> +
> +   blocks = len / SHA512_BLOCK_SIZE;
> +   len %= SHA512_BLOCK_SIZE;
> +
> +   block_fn(blocks, data, sctx->state,
> +partial ? sctx->buf : NULL, p);
> +   data += blocks * SHA512_BLOCK_SIZE;
> +   partial = 0;
> +   }
> +   if (len)
> +   memcpy(sctx->buf + partial, data, len);
> +
> +   return 0;
> +}
> +EXPORT_SYMBOL(sha512_base_do_update);
> +
> +int sha512_base_do_finalize(struct shash_desc *desc, sha512_block_fn 
> *block_fn,
> +   void *p)
> +{
> +   static const u8 padding[SHA512_BLOCK_SIZE] = { 0x80, };
> +
> +   struct sha512_state *sctx = shash_desc_ctx(desc);
> +   unsigned int padlen;
> +   __be64 bits[2];
> +
> +   padlen = SHA512_BLOCK_SIZE -
> +(sctx->count[0] + sizeof(bits)) % SHA512_BLOCK_SIZE;
> +
> +   bits[0] = cpu_to_be64(sctx->count[1] << 3 |
> + sctx->count[0] >> 61);
> +   bits[1] = cpu_to_be64(sctx->count[0] << 3);
> +
> +   sha512_base_do_update(desc, padding, padlen, block_fn, p);

I know that this is the most intuitive and straight implementation for handling
finalization. Nevertheless the maybe a little obscure generic md5 algorithm
gives best in class performance for hash finalization of small input data. 

For comparison: From the raw numbers the sha1-ppc-spe assembler module 
written by me is only 10% faster than the old sha1-popwerpc assembler module. 
Both are simple assembler algorithms without hardware acceleration. For large 
blocks I gain another 8% by avoding function calls because the core module 
may process several blocks. But for small single block updates the above glue 
code optimizations gave

16byte block single update: +24%
64byte block single update: +16%
256byte block single update +12%

Considering CPU assisted SHA calculations t

[RFC PATCH 1/6] crypto: sha512: implement base layer for SHA-512

2015-03-28 Thread Ard Biesheuvel
To reduce the number of copies of boilerplate code throughout
the tree, this patch implements generic glue for the SHA-512
algorithm. This allows a specific arch or hardware implementation
to only implement the special handling that it needs.

Signed-off-by: Ard Biesheuvel 
---
 crypto/Kconfig   |   3 ++
 crypto/Makefile  |   1 +
 crypto/sha512_base.c | 143 +++
 include/crypto/sha.h |  20 +++
 4 files changed, 167 insertions(+)
 create mode 100644 crypto/sha512_base.c

diff --git a/crypto/Kconfig b/crypto/Kconfig
index 88639937a934..3400cf4e3cdb 100644
--- a/crypto/Kconfig
+++ b/crypto/Kconfig
@@ -641,6 +641,9 @@ config CRYPTO_SHA256_SPARC64
  SHA-256 secure hash standard (DFIPS 180-2) implemented
  using sparc64 crypto instructions, when available.
 
+config CRYPTO_SHA512_BASE
+   tristate
+
 config CRYPTO_SHA512
tristate "SHA384 and SHA512 digest algorithms"
select CRYPTO_HASH
diff --git a/crypto/Makefile b/crypto/Makefile
index 97b7d3ac87e7..6174bf2592fe 100644
--- a/crypto/Makefile
+++ b/crypto/Makefile
@@ -45,6 +45,7 @@ obj-$(CONFIG_CRYPTO_RMD256) += rmd256.o
 obj-$(CONFIG_CRYPTO_RMD320) += rmd320.o
 obj-$(CONFIG_CRYPTO_SHA1) += sha1_generic.o
 obj-$(CONFIG_CRYPTO_SHA256) += sha256_generic.o
+obj-$(CONFIG_CRYPTO_SHA512_BASE) += sha512_base.o
 obj-$(CONFIG_CRYPTO_SHA512) += sha512_generic.o
 obj-$(CONFIG_CRYPTO_WP512) += wp512.o
 obj-$(CONFIG_CRYPTO_TGR192) += tgr192.o
diff --git a/crypto/sha512_base.c b/crypto/sha512_base.c
new file mode 100644
index ..488e24cc6f0a
--- /dev/null
+++ b/crypto/sha512_base.c
@@ -0,0 +1,143 @@
+/*
+ * sha512_base.c - core logic for SHA-512 implementations
+ *
+ * Copyright (C) 2015 Linaro Ltd 
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+#include 
+#include 
+#include 
+#include 
+
+#include 
+
+int sha384_base_init(struct shash_desc *desc)
+{
+   struct sha512_state *sctx = shash_desc_ctx(desc);
+
+   *sctx = (struct sha512_state){
+   .state = {
+   SHA384_H0, SHA384_H1, SHA384_H2, SHA384_H3,
+   SHA384_H4, SHA384_H5, SHA384_H6, SHA384_H7,
+   }
+   };
+   return 0;
+}
+EXPORT_SYMBOL(sha384_base_init);
+
+int sha512_base_init(struct shash_desc *desc)
+{
+   struct sha512_state *sctx = shash_desc_ctx(desc);
+
+   *sctx = (struct sha512_state){
+   .state = {
+   SHA512_H0, SHA512_H1, SHA512_H2, SHA512_H3,
+   SHA512_H4, SHA512_H5, SHA512_H6, SHA512_H7,
+   }
+   };
+   return 0;
+}
+EXPORT_SYMBOL(sha512_base_init);
+
+int sha512_base_export(struct shash_desc *desc, void *out)
+{
+   struct sha512_state *sctx = shash_desc_ctx(desc);
+   struct sha512_state *dst = out;
+
+   *dst = *sctx;
+
+   return 0;
+}
+EXPORT_SYMBOL(sha512_base_export);
+
+int sha512_base_import(struct shash_desc *desc, const void *in)
+{
+   struct sha512_state *sctx = shash_desc_ctx(desc);
+   struct sha512_state const *src = in;
+
+   *sctx = *src;
+
+   return 0;
+}
+EXPORT_SYMBOL(sha512_base_import);
+
+int sha512_base_do_update(struct shash_desc *desc, const u8 *data,
+ unsigned int len, sha512_block_fn *block_fn, void *p)
+{
+   struct sha512_state *sctx = shash_desc_ctx(desc);
+   unsigned int partial = sctx->count[0] % SHA512_BLOCK_SIZE;
+
+   sctx->count[0] += len;
+   if (sctx->count[0] < len)
+   sctx->count[1]++;
+
+   if ((partial + len) >= SHA512_BLOCK_SIZE) {
+   int blocks;
+
+   if (partial) {
+   int p = SHA512_BLOCK_SIZE - partial;
+
+   memcpy(sctx->buf + partial, data, p);
+   data += p;
+   len -= p;
+   }
+
+   blocks = len / SHA512_BLOCK_SIZE;
+   len %= SHA512_BLOCK_SIZE;
+
+   block_fn(blocks, data, sctx->state,
+partial ? sctx->buf : NULL, p);
+   data += blocks * SHA512_BLOCK_SIZE;
+   partial = 0;
+   }
+   if (len)
+   memcpy(sctx->buf + partial, data, len);
+
+   return 0;
+}
+EXPORT_SYMBOL(sha512_base_do_update);
+
+int sha512_base_do_finalize(struct shash_desc *desc, sha512_block_fn *block_fn,
+   void *p)
+{
+   static const u8 padding[SHA512_BLOCK_SIZE] = { 0x80, };
+
+   struct sha512_state *sctx = shash_desc_ctx(desc);
+   unsigned int padlen;
+   __be64 bits[2];
+
+   padlen = SHA512_BLOCK_SIZE -
+(sctx->count[0] + sizeof(bits)) % SHA512_BLOCK_SIZE;
+
+   bits[0] = cpu_to_be64(sctx->count[1] << 3 |
+ sctx->count[0] >> 61);
+   bits[1] = cpu_to_b