Re: [obm-l] Probabilidade

2021-04-23 Por tôpico Pacini Bores
 

Obrigado Ralph pela explicação didática. 

Ficou esclarecida a minha dúvida 

Abraços 

Pacini 

Em 23/04/2021 16:59, Ralph Costa Teixeira escreveu: 

> Ah, Pacini, você levanta um ponto interessante... 
> 
> Primeiro, deixa eu esclarecer: eu usei p(n) = Pr (A vai vencer o jogo | A tem 
> n pontos a mais do que B agora); ou seja, não seria exatamente o que você 
> interpretou ali. 
> 
> Daqui meu argumento de simetria: a partir do momento em que A tem 0 pontos a 
> mais do que B, ou seja, eles estão empatados, o jogo é completamente 
> simétrico, ou seja, eu posso permutar A e B sem alterar nenhuma 
> probabilidade. Por isso eu digo que: 
> 
> p(0) = Pr (A vencer | empatados agora) = Pr (B vencer | empatados agora) 
> 
> Aqui entra o seu ponto interessante: É POSSÍVEL QUE ESTE JOGO CONTINUE PARA 
> SEMPRE, SEM QUE HAJA VENCEDOR. De fato, se os lançamentos a partir de agora 
> forem CKCKCKCK..., o jogo nunca termina. 
> 
> Entao eu deveria escrever Pr (A vencer | empatados agora) + Pr (B vencer | 
> empatados agora) + Pr (jogo nunca terminar | empatados agora) = 1. Para eu 
> poder afirmar que os dois primeiros termos valem 1/2, **eu tenho que te 
> convencer primeiro que o terceiro termo vale 0**. 
> 
> Bom, vale 0 sim, mas eu usei isso baseado em experiência prévia com este tipo 
> de experimento; por exemplo, sei que: 
> 
> ---///--- 
> LEMA: Lance uma moeda infinitas vezes, onde cada lançamento é independente 
> dos outros e tem probabilidade p de dar "Cara" e 1-p de dar "Koroa", com 
> 0 momento da sequência é 1. 
> 
> PROVA: Escreva "sucesso" = "obter N caras consecutivas", e "fracasso" = "nao 
> obter N caras consecutivas". Temos: 
> Pr (fracasso nos lançamentos 1 a N) = 1-p^N = a, onde 0 Pr (fracasso nos lançamentos N+1 a 2N) = a. 
> Pr (fracasso nos lançamentos 2N+1 a 3N) = a. 
> ... 
> Pois bem, fracasso na sequência toda IMPLICA fracasso em cada uma das 
> subsequências que escolhi acima. Como tomei sequências disjuntas de 
> lançamentos, posso multiplicar tudo e obter: 
> Pr (fracasso nos lançamentos de 1 a kN) <= a^k. 
> 
> Quando k->Inf, isso vai para 0, portanto a probabilidade de fracasso nos 
> "infinitos" lançamentos vale 0. 
> ---///--- 
> 
> O que isso tem a ver com nosso problema? No nosso problema, note que se 
> tivermos 7 lances consecutivos onde A marca ponto mas B não (deixa eu chamar 
> isso de "cara"), certamente A vai vencer em algum momento desta sequência. 
> 
> Assim, "jogo nunca terminar" IMPLICA "nunca existe uma sequência de 7 caras". 
> Portanto: 
> Pr (jogo não terminar) <= Pr(nunca ter sequência com 7 "caras") = 0 
> e assim eu posso completar o argumento que eu usei, afirmando que p(0)=1/2. 
> Ufa! 
> 
> (Note que este argumento vale mesmo no caso em que cada "lance" tem 4 opções 
> (1,0); (0,1); (0,0); (1,1) para o número de pontos que A e B ganham; aqui 
> teríamos p("cara")=1/4, continua valendo!) 
> 
> ---///--- 
> 
> Enfim, antes que alguém estranhe isso, deixa eu explicitar algo que pode 
> parecer estranho: 
> -- SIM, é possível que o jogo nunca termine... 
> -- ...e a probabilidade disso acontecer vale 0. 
> Os axiomas da probabilidade dizem que Pr(vazio)=0; SE um evento é impossível 
> ENTÃO ele tem probabilidade 0. Mas nunca dizem a volta disso! Podemos ter 
> Pr(A)=0 sem ter A=vazio nem impossível! Eventos POSSÍVEIS podem ter 
> probabilidade 0 sim senhor. 
> Exemplo simples: jogando uma moeda justa infinitas vezes, qual a 
> probabilidade de todas as vezes darem cara? Reposta: ZERO. PODE acontecer... 
> mas, huh, eu não apostaria nisso. :D 
> Pior: eventos de probabilidade 0 ACONTECEM. Exemplo: jogue a moeda infinitas 
> vezes, anote a sequência exata que saiu, na ordem. A probabilidade de sair 
> exatamente esta sequência era ZERO antes de você fazer o experimento... mas 
> aconteceu. :P 
> 
> On Fri, Apr 23, 2021 at 9:48 AM Pacini Bores  wrote: 
> 
> Desculpe Ralph, 
> 
> O que não ficou claro pra mim foi o fato de que p(0) =1/2 , já que p(0) 
> traduz a probabilidade de de ficar com diferença de zero ponto agora ou 
> depois, ou seja, partindo de zero ponto de diferença entre os dois jogadores, 
> poderia ficar assim a vida toda, não ? Em que estou pensando errado. 
> 
> Agradeço desde já ( acho que tenho que estudar mais) 
> 
> Pacini 
> 
> Em 03/04/2021 18:08, Ralph Costa Teixeira escreveu: 
> 
> Vou dizer que "o jogo está na posicao n" quando A tem n pontos de vantagem; e 
> vou chamar de p(n) a probabilidade de A vencer o jogo (agora ou depois) 
> sabendo que (agora) A tem n pontos mais do que B. 
> 
> Por exemplo, p(3)=1, p(-3)=0 e p(0)=1/2 (por simetria). 
> 
> Aliás, por simetria, vemos que p(1)=1-p(-1) e p(2)=1-p(-2). Vou chamar a=p(1) 
> e b=p(2) para facilitar a escrita (o "p(n)" seria util para jogos maiores, 
> quando a gente escreveria tudo em forma matricial -- mas aqui nem vou 
> precisar). 
> 
> A partir da posicao 1, no próximo "lance", temos 50% de chance de ir para 2 
> (e dali chance b de A ganhar) e 50% de chance de ir para 0 

Re: [obm-l]

2021-04-23 Por tôpico Marcos Martinelli
Legal, Matheus.

Minha ideia foi encontrar um polinômio em m.n (m = raiz(2) e
n=raiz_cúbica(2)) de coeficientes racionais. Pra isso desenvolvi m^k + n^k
(k >= 0) até k=6 e encontrei um de grau 6 com coeficientes dependendo só de
m+n.

Se m+n for racional, usei o fato de se a + beta (a racional e beta
irracional com beta^j  também irracional (1=< j <= grau do polinômio- 1)
for raiz desse polinômio então a - beta também seria.

Mas essa sua ficou bem elegante.

Brigado.

Em sex., 23 de abr. de 2021 às 17:18, Matheus Secco 
escreveu:

> Oi, Marcos. Não é difícil verificar que raiz(2) + raiz_cubica(2) é uma
> raiz do polinômio x^6 - 6 x^4 - 4 x^3 + 12 x^2 - 24 x - 4. Com isso, pelo
> teorema das raízes racionais, se raiz(2) + raiz_cubica(2) fosse racional,
> teria que ser um inteiro e é fácil verificar que 2 < raiz(2) +
> raiz_cubica(2) < 3.
>
> Abraços
>
> On Fri, Apr 23, 2021 at 4:43 PM Marcos Martinelli 
> wrote:
>
>> Opa, pessoal. Pensei nos últimos dias no problema seguinte. Cheguei a uma
>> solução um pouco mais genérica, mas me deu trabalho. Gostaria de estudar
>> outras abordagens.
>>
>> Problema) Prove que raiz (2) + raiz_cúbica (2) é irracional.
>>
>> Na sequência posto um rascunho do que pensei.
>>
>> Obrigado.
>>
>> --
>> Esta mensagem foi verificada pelo sistema de antivírus e
>> acredita-se estar livre de perigo.
>
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.



[obm-l] Re: [obm-l] Re: [obm-l] Função

2021-04-23 Por tôpico Israel Meireles Chrisostomo
Obrigado

Em qui, 22 de abr de 2021 11:25, Artur Costa Steiner <
artur.costa.stei...@gmail.com> escreveu:

> O que vc disse só vale para funções contínuas de R em R. No domínio
> complexo, não vale.
> Nos complexos, uma função inteira é injetora se, e somente se, for um
> mapeamento afim não constante, caso em que é bijetora.
>
> Artur
>
>
> Em qui., 22 de abr. de 2021 07:19, Israel Meireles Chrisostomo <
> israelmchrisost...@gmail.com> escreveu:
>
>> Me desculpem se eu estou falando bobagem, mas considere uma função com
>> domínio complexo, então essa função não pode ser bijetora, pois toda função
>> bijetora ou é crescente ou é decrescente, mas não há ordem nos complexos
>>
>> --
>> Esta mensagem foi verificada pelo sistema de antivírus e
>> acredita-se estar livre de perigo.
>
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.



Re: [obm-l]

2021-04-23 Por tôpico Matheus Secco
Oi, Marcos. Não é difícil verificar que raiz(2) + raiz_cubica(2) é uma raiz
do polinômio x^6 - 6 x^4 - 4 x^3 + 12 x^2 - 24 x - 4. Com isso, pelo
teorema das raízes racionais, se raiz(2) + raiz_cubica(2) fosse racional,
teria que ser um inteiro e é fácil verificar que 2 < raiz(2) +
raiz_cubica(2) < 3.

Abraços

On Fri, Apr 23, 2021 at 4:43 PM Marcos Martinelli 
wrote:

> Opa, pessoal. Pensei nos últimos dias no problema seguinte. Cheguei a uma
> solução um pouco mais genérica, mas me deu trabalho. Gostaria de estudar
> outras abordagens.
>
> Problema) Prove que raiz (2) + raiz_cúbica (2) é irracional.
>
> Na sequência posto um rascunho do que pensei.
>
> Obrigado.
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.



Re: [obm-l] Probabilidade

2021-04-23 Por tôpico Ralph Costa Teixeira
Ah, Pacini, você levanta um ponto interessante...

Primeiro, deixa eu esclarecer: eu usei p(n) = Pr (A vai vencer o jogo | A
tem n pontos a mais do que B agora); ou seja, não seria exatamente o que
você interpretou ali.

Daqui meu argumento de simetria: a partir do momento em que A tem 0 pontos
a mais do que B, ou seja, eles estão empatados, o jogo é completamente
simétrico, ou seja, eu posso permutar A e B sem alterar nenhuma
probabilidade. Por isso eu digo que:

p(0) = Pr (A vencer | empatados agora) = Pr (B vencer | empatados agora)

Aqui entra o seu ponto interessante: É POSSÍVEL QUE ESTE JOGO CONTINUE PARA
SEMPRE, SEM QUE HAJA VENCEDOR. De fato, se os lançamentos a partir de agora
forem CKCKCKCK..., o jogo nunca termina.

Entao eu deveria escrever Pr (A vencer | empatados agora) + Pr (B vencer |
empatados agora) + Pr (jogo nunca terminar | empatados agora) = 1. Para eu
poder afirmar que os dois primeiros termos valem 1/2, **eu tenho que te
convencer primeiro que o terceiro termo vale 0**.

Bom, vale 0 sim, mas eu usei isso baseado em experiência prévia com este
tipo de experimento; por exemplo, sei que:

---///---
LEMA: Lance uma moeda infinitas vezes, onde cada lançamento é independente
dos outros e tem probabilidade p de dar "Cara" e 1-p de dar "Koroa", com
0Inf, isso vai para 0, portanto a probabilidade de fracasso nos
"infinitos" lançamentos vale 0.
---///---

O que isso tem a ver com nosso problema? No nosso problema, note que se
tivermos 7 lances consecutivos onde A marca ponto mas B não (deixa eu
chamar isso de "cara"), certamente A vai vencer em algum momento desta
sequência.

Assim, "jogo nunca terminar" IMPLICA "nunca existe uma sequência de 7
caras". Portanto:
Pr (jogo não terminar) <= Pr(nunca ter sequência com 7 "caras") = 0
e assim eu posso completar o argumento que eu usei, afirmando que p(0)=1/2.
Ufa!

(Note que este argumento vale mesmo no caso em que cada "lance" tem 4
opções (1,0); (0,1); (0,0); (1,1) para o número de pontos que A e B ganham;
aqui teríamos p("cara")=1/4, continua valendo!)

---///---

Enfim, antes que alguém estranhe isso, deixa eu explicitar algo que pode
parecer estranho:
-- SIM, é possível que o jogo nunca termine...
-- ...e a probabilidade disso acontecer vale 0.
Os axiomas da probabilidade dizem que Pr(vazio)=0; SE um evento é
impossível ENTÃO ele tem probabilidade 0. Mas nunca dizem a volta disso!
Podemos ter Pr(A)=0 sem ter A=vazio nem impossível! Eventos POSSÍVEIS podem
ter probabilidade 0 sim senhor.
Exemplo simples: jogando uma moeda justa infinitas vezes, qual a
probabilidade de todas as vezes darem cara? Reposta: ZERO. PODE
acontecer... mas, huh, eu não apostaria nisso. :D
Pior: eventos de probabilidade 0 ACONTECEM. Exemplo: jogue a moeda
infinitas vezes, anote a sequência exata que saiu, na ordem. A
probabilidade de sair exatamente esta sequência era ZERO antes de você
fazer o experimento... mas aconteceu. :P





On Fri, Apr 23, 2021 at 9:48 AM Pacini Bores  wrote:

> Desculpe  Ralph,
>
> O que não ficou claro pra mim  foi o fato de que p(0) =1/2 , já que p(0)
> traduz a probabilidade de de ficar com diferença de  zero ponto  agora ou
> depois, ou seja, partindo de zero ponto de diferença entre os dois
> jogadores, poderia ficar assim a vida toda, não ? Em que estou pensando
> errado.
>
> Agradeço desde já ( acho que tenho que estudar mais)
>
> Pacini
>
> Em 03/04/2021 18:08, Ralph Costa Teixeira escreveu:
>
> Vou dizer que "o jogo está na posicao n" quando A tem n pontos de
> vantagem; e vou chamar de p(n) a probabilidade de A vencer o jogo (agora ou
> depois) sabendo que (agora) A tem n pontos mais do que B.
>
> Por exemplo, p(3)=1, p(-3)=0 e p(0)=1/2 (por simetria).
>
> Aliás, por simetria, vemos que p(1)=1-p(-1) e p(2)=1-p(-2). Vou chamar
> a=p(1) e b=p(2) para facilitar a escrita (o "p(n)" seria util para jogos
> maiores, quando a gente escreveria tudo em forma matricial -- mas aqui nem
> vou precisar).
>
> A partir da posicao 1, no próximo "lance", temos 50% de chance de ir para
> 2 (e dali chance b de A ganhar) e 50% de chance de ir para 0 (e dali chance
> 50% de A ganhar). Portanto:
>
> a= 1/2 . b + 1/2. 1/2
>
> Analogamente, a partir de 2, temos 50% de chance de ir para 1 e 50% de
> chance de termos vitória de A, portanto:
>
> b=1/2 + 1/2.a
>
> Resolvendo o sistema, vem a=2/3  e b = 5/6. Resposta (B)?
>
> Abraco, Ralph.
>
> P.S.: Em geral seria : p(n)=p_A . p(n+1) + (1-p_A) . p(n-1), e as regras
> sobre a vitória determinam "condições de contorno". Ou seja, considerando o
> vetor v = (p(-m), p(-m+1), ... p(0), ... p(m)), temos v=Mv onde M é uma
> matriz tridiagonal (de fato, com 0s na diagonal). Ou seja, no fundo no
> fundo estamos falando de um problema de achar o autovetor associado ao
> autovalor 1 da matriz M, e as condicoes de contorno apenas normalizam v.
>
>
>
>
> On Sat, Apr 3, 2021 at 3:22 PM Pacini Bores 
> wrote:
>
>> Olá pessoal, Encontrei uma resposta que não está entre as opções desta
>> questão do Canguru.
>>
>> " um certo 

[obm-l]

2021-04-23 Por tôpico Marcos Martinelli
Opa, pessoal. Pensei nos últimos dias no problema seguinte. Cheguei a uma
solução um pouco mais genérica, mas me deu trabalho. Gostaria de estudar
outras abordagens.

Problema) Prove que raiz (2) + raiz_cúbica (2) é irracional.

Na sequência posto um rascunho do que pensei.

Obrigado.

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.



[obm-l] RES: [obm-l] Re: [obm-l] INFLAÇÂO MÁXIMA

2021-04-23 Por tôpico bouskela
Olá!

Para começar, esta questão deveria ter sido anulada. “… não HAJAM perdas 
reais?” é um assassinato da nossa língua.

 

Juros “reais” (JR), de 10%, significam juros acima da inflação (IF).

No período de 1 ano, o ganho bruto de capital (GB) será: GB = 1.000 
(1+10%)(1+IF) - 1.000

Descontando o imposto, o ganho líquido (GL) será: GL =  (1-40%)GB

Condição de contorno: não “hão” (coerência com o linguajar da questão) perdas 
reais: 1.000(1+IF) = 1.000+GL = 1.000 + (1-40%)GB = 1.000 + (1-40%)( 1.000 
(1+10%)(1+IF) - 1.000 )

Daí: IF = 17,6470…%

 

Albert Bouskelá

  bousk...@gmail.com

 

De: owner-ob...@mat.puc-rio.br  Em nome de Daniel 
Jelin
Enviada em: sexta-feira, 23 de abril de 2021 12:30
Para: obm-l@mat.puc-rio.br
Assunto: [obm-l] Re: [obm-l] INFLAÇÂO MÁXIMA

 

Curioso, pra mim deu muito perto, 17,6470...%

Resolvi a seguinte inequação, com x = 1 + (inflação):

1.1*1000x - (1.1*1000x - 1000)*0.4>=1000x
1.1 x - 0.44 x + 0.4 >= x
x<=0.4/0.34= 1.176470... 

Parece simples. O que tá escapando aqui?

 

On Fri, Apr 23, 2021 at 11:23 AM Pedro Júnior mailto:pedromatematic...@gmail.com> > wrote:

Olá pessoal, acabei me enrolando nesse probleminha da Olimpíada Brasileira de 
Economia. Será que alguém pode me ajudar? Vai junto o gabarito da competição, 
isso foi em 2020.

 

01) Um título comprado por mil reais promete pagar juros reais de 10% a.a. A 
alíquota de imposto é de 40%. Qual a inflação máxima no período para que não 
hajam perdas reais?

Resp.: 17,62%


 

-- 

Pedro Jerônimo S. de O. Júnior

Professor de Matemática

 


-- 
Esta mensagem foi verificada pelo sistema de antivírus e 
acredita-se estar livre de perigo. 


-- 
Esta mensagem foi verificada pelo sistema de antiv�s e 
acredita-se estar livre de perigo. 


-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.



Re: [obm-l] Probabilidade

2021-04-23 Por tôpico Pacini Bores
 

Desculpe Ralph, 

O que não ficou claro pra mim foi o fato de que p(0) =1/2 , já que p(0)
traduz a probabilidade de de ficar com diferença de zero ponto agora ou
depois, ou seja, partindo de zero ponto de diferença entre os dois
jogadores, poderia ficar assim a vida toda, não ? Em que estou pensando
errado. 

Agradeço desde já ( acho que tenho que estudar mais) 

Pacini 

Em 03/04/2021 18:08, Ralph Costa Teixeira escreveu: 

> Vou dizer que "o jogo está na posicao n" quando A tem n pontos de vantagem; e 
> vou chamar de p(n) a probabilidade de A vencer o jogo (agora ou depois) 
> sabendo que (agora) A tem n pontos mais do que B. 
> 
> Por exemplo, p(3)=1, p(-3)=0 e p(0)=1/2 (por simetria). 
> 
> Aliás, por simetria, vemos que p(1)=1-p(-1) e p(2)=1-p(-2). Vou chamar a=p(1) 
> e b=p(2) para facilitar a escrita (o "p(n)" seria util para jogos maiores, 
> quando a gente escreveria tudo em forma matricial -- mas aqui nem vou 
> precisar). 
> 
> A partir da posicao 1, no próximo "lance", temos 50% de chance de ir para 2 
> (e dali chance b de A ganhar) e 50% de chance de ir para 0 (e dali chance 50% 
> de A ganhar). Portanto: 
> 
> a= 1/2 . b + 1/2. 1/2 
> 
> Analogamente, a partir de 2, temos 50% de chance de ir para 1 e 50% de chance 
> de termos vitória de A, portanto: 
> 
> b=1/2 + 1/2.a 
> 
> Resolvendo o sistema, vem a=2/3 e b = 5/6. Resposta (B)? 
> 
> Abraco, Ralph. 
> 
> P.S.: Em geral seria : p(n)=p_A . p(n+1) + (1-p_A) . p(n-1), e as regras 
> sobre a vitória determinam "condições de contorno". Ou seja, considerando o 
> vetor v = (p(-m), p(-m+1), ... p(0), ... p(m)), temos v=Mv onde M é uma 
> matriz tridiagonal (de fato, com 0s na diagonal). Ou seja, no fundo no fundo 
> estamos falando de um problema de achar o autovetor associado ao autovalor 1 
> da matriz M, e as condicoes de contorno apenas normalizam v.
> 
> On Sat, Apr 3, 2021 at 3:22 PM Pacini Bores  wrote: 
> 
>> Olá pessoal, Encontrei uma resposta que não está entre as opções desta 
>> questão do Canguru. 
>> 
>> " um certo jogo tem um vencedor quando este atinge 3 pontos a frente do 
>> oponente. Dois jogadores A e B estão jogando e, num determinado momento, A 
>> está 1 ponto a frente de B. Os jogadores têm probabilidades iguais de obter 
>> 1 ponto. Qual a probabilidade de A vencer o jogo ? 
>> 
>> (A) 1/2 (B) 2/3 (C) 3/4 (D) 4/5 (E) 5/6 
>> 
>> O que vocês acham ? 
>> 
>> Pacini 
>> 
>> -- 
>> Esta mensagem foi verificada pelo sistema de antivírus e 
>> acredita-se estar livre de perigo.
> 
> -- 
> Esta mensagem foi verificada pelo sistema de antivrus e 
> acredita-se estar livre de perigo.

 
-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.



[obm-l] Re: [obm-l] INFLAÇÂO MÁXIMA

2021-04-23 Por tôpico Daniel Jelin
Curioso, pra mim deu muito perto, 17,6470...%

Resolvi a seguinte inequação, com x = 1 + (inflação):

1.1*1000x - (1.1*1000x - 1000)*0.4>=1000x
1.1 x - 0.44 x + 0.4 >= x
x<=0.4/0.34= 1.176470...

Parece simples. O que tá escapando aqui?

On Fri, Apr 23, 2021 at 11:23 AM Pedro Júnior 
wrote:

> Olá pessoal, acabei me enrolando nesse probleminha da Olimpíada Brasileira
> de Economia. Será que alguém pode me ajudar? Vai junto o gabarito da
> competição, isso foi em 2020.
>
> *01)* Um título comprado por mil reais promete pagar juros reais de 10%
> a.a. A alíquota de imposto é de 40%. Qual a inflação máxima no período para
> que não hajam perdas reais?
> Resp.: 17,62%
>
> --
>
> Pedro Jerônimo S. de O. Júnior
>
> Professor de Matemática
>
>
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.



[obm-l] INFLAÇÂO MÁXIMA

2021-04-23 Por tôpico Pedro Júnior
Olá pessoal, acabei me enrolando nesse probleminha da Olimpíada Brasileira
de Economia. Será que alguém pode me ajudar? Vai junto o gabarito da
competição, isso foi em 2020.

*01)* Um título comprado por mil reais promete pagar juros reais de 10%
a.a. A alíquota de imposto é de 40%. Qual a inflação máxima no período para
que não hajam perdas reais?
Resp.: 17,62%

-- 

Pedro Jerônimo S. de O. Júnior

Professor de Matemática

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.