Em 29 de abr de 2019 11:37, Pedro José <petroc...@gmail.com> escreveu:
Bom dia!

Gostei desse problema. Fiz um montão de exemplos com números que não podem ser escritos como 4^n(8n+7) e todos puderam ser escritos como a soma de três quadrados.
Vale para todos? Se sim, alguém poderia indicar uma demonstração?

Saudações,
PJMS

Em dom, 7 de abr de 2019 às 16:16, Pedro José <petrocean@gmail.com> escreveu:
Boa tarde!
Fiquei na dúvida se algoritmo valia para demonstração. Mas salvo engano para demonstração de quais números aceitam raízes primitivas usa-se algoritmo.
Mas, agora com mais calma, poderia ter usado indução.
1) Foi provado que não vale para n=0.
2) Supondo que não vale para n, não valeria para n+1, por absurdo. Pois, se valesse, teria que valer para n.
Creio que teria ficado mais elegante.

Saudações,
PJMS


Em dom, 7 de abr de 2019 às 07:41, matematica10complicada <profdouglaso.delima@gmail.com> escreveu:
Obrigado irmão. Está correto sim. 
Douglas O.

Em qui, 4 de abr de 2019 às 19:44, Pedro José <petrocean@gmail.com> escreveu:
Boa noite!
Estou mal, mesmo. Ao invés de nenhum li qualquer. Tinha simulado dois, três, quatro e deram fora, já iria questionar.
Mas vamos lá:
0^2 = 0 mod8; 1^2 = 1 mod8; 2^2 = 4 mod8 3^2= 1 mod8; 4^2 = 0 mod 8; 5^2 = 1 mod 8 6^2 = 4 mod 8 e 7^2 = 1 mod8;
Portanto o quadrado de um número, ou dá 0 ou da 1 ou 4 na equivalência  mod8.

Caso n=0 ==> x=8k+7= 7 mod8. Como mod conserva a soma, não há como somar 3 parcelas do conjunto, mesmo com repetição, {0,1,4} e obter 7. Então n>0

Para n>0
x = 4^n*(8K+7) ==> x pertence a 2 |N seja x = a^2 + b^2 + c^2 com a, b, c pertencentes a |N - {0}. teríamos que ter a,b,c pares ou um deles par e dois ímpares.
mas 4 | x ==> x= 0 mod4. Mas se w pertence a 2|N + 1 ==> w^2 = 1 mod4. e se y pertence a 2 |N ==> y^2 = 0 mod 4. Como temos dois ímpares e um par e como a soma se conserva temos que x = 2 mod4, absurdo. Portanto só sobra a, b, c pares Se a,b,c pares podemos escrevê-los como a= 2s; b=2t e c=2u com s,t,u naturais.
x = a^2+b^2+c^2= 4(s^2+t^2+u^2) ==> x1 = 4^(n-1) * (8m+7) = s^2+t^2+u^2 e vale o mesmo raciocínio de que s,t,u são pares e poderão ser escritos como s=2f; t=2g; u= 2h, com f, g, h naturais e seguir nesse algoritmo até que tenhamos xj=4^0(8m+7)= p^2+q^2+r^2, absurdo. Pois, já vimos que n= 0 não atende.

Espero estar correto.

Saudações.



 

Em qua, 3 de abr de 2019 às 15:36, matematica10complicada <profdouglaso.delima@gmail.com> escreveu:
Mostre que nenhum número da forma (4^n)(8k+7) , com n e k naturais pode ser escrito como soma de 3 tres quadrados

Douglas Oliveira

--
Esta mensagem foi verificada pelo sistema de antivírus e
acredita-se estar livre de perigo.

--
Esta mensagem foi verificada pelo sistema de antivírus e
acredita-se estar livre de perigo.

--
Esta mensagem foi verificada pelo sistema de antivírus e
acredita-se estar livre de perigo.

--
Esta mensagem foi verificada pelo sistema de antiv�rus e
acredita-se estar livre de perigo.


--
Esta mensagem foi verificada pelo sistema de antivírus e
acredita-se estar livre de perigo.

Responder a