Re: [Vo]:Heat from the pump would not be a problem even if we could detect it

2014-11-18 Thread David Roberson
Jed, is it possible to calculate the amount of power that is being added to the 
water by looking at the system?  I assume that the water is not moving just 
prior to being accelerated to finally reach the speed that it is moving inside 
the pipe.  That may allow you to calculate the kinetic energy that must be 
imparted to it which would be deposited into the far tank.  The frictional 
losses within the pipe would have to be supplied by the pump as well.  That 
heat would likely end up within the water instead of conducting through the 
hose surface.

A good first start would be to calculate the kinetic portion of the pump power. 
  It does make me curious as to where they assume the 3 watts is being 
dissipated.  I find it difficult to believe that this much power is always 
being delivered regardless of the load configuration.  In a very short pipe the 
losses must be kinetic.

Do you have information concerning the mass of water pumped per second and its 
velocity at exit?  Energy is equal to 1/2 * mass * velocity squared.  The power 
can then be determined by dividing by the time during which that energy is 
imparted.  Give it a shot!

Dave

 

 

 

-Original Message-
From: Jed Rothwell jedrothw...@gmail.com
To: vortex-l vortex-l@eskimo.com
Sent: Tue, Nov 18, 2014 5:45 pm
Subject: [Vo]:Heat from the pump would not be a problem even if we could detect 
it


Some people are still confused about the input power from the pump in Mizuno’s 
calorimetry. Let me point out two things about this:

1.  While there has to be some heat from the pump, with this configuration, 
that heat is too small and too close to the noise to be detected with this 
equipment. This is obvious from the data I uploaded.

2.  If the heat could be detected, it would still not be a problem. It 
would simply be included in the baseline. In calorimetry you sometimes see 
input power from the instruments themselves, or from something like a 
circulation fan in a Seebeck calorimeter. The pump runs under the same 
conditions at all times so power is stable and it would be easy to subtract.

Let me discuss these two points in more detail.

Some people seem to have difficulty grasping the notion that heat can be too 
small to measure with a given instrument. I suppose the heat from this pump is 
on the order of ~0.2 W. Based on other data I think ~0.5 W is barely detectable 
with this system. The pump heat cannot be measured because it is close to the 
noise from ambient temperature changes. With any calorimeter it is always more 
difficult to measure at the bottom of the scale down in the noise. You can 
measure the difference between 3.0 W and 3.2 W more easily than the difference 
between 0.0 W and 0.2 W.

Mizuno left the pump running for a day to see whether he could detect heat from 
it. Looking at the water temperature for the day he did not see an elevation 
above ambient. No doubt there was one, but he could not see it. Ambient 
temperature changes swamped it. One minute the room is warmer than the water by 
0.2°C. A few minutes later the room heater turns off and the reactor is soon 
warmer by 0.1°C. This is what I observed on October 23 when we did not conduct 
testing until afternoon and I left the Omega thermometer in the T1-T2 
comparative mode. That means heat from the room is sloshing into and out of the 
water, albeit at a very low rate thanks to the insulation. Still, it is 
apparently doing that enough to hide the effects of the pump. Once the water is 
heated above ambient, the heat sloshes out only.


After the heating and air-conditioning in Mizuno’s lab is upgraded, it may be 
possible to detect a slight average temperature rise above ambient caused by 
the pump. If that happens we can then subtract that difference from the 
temperature readings. That is what I mean by included in the baseline.


A low level of input power will cause a persistent average higher temperature 
compared to ambient. It will not cause the temperature to climb higher and 
higher indefinitely, until you can see it. The temperature instead reaches a 
peak where losses equal input. In other words, after a while the system 
functions as an isoperibolic calorimeter, not an adiabatic one. Because 
insulation is not perfect.

That seems to confuse people. Let me go it over it again with an example. On 
October 21 the average power measured with the reactor metal and water is 
roughly 4.7 W. That is 1.4 W from the resistance heater pulses plus 3.3 W of 
anomalous power, ignoring losses. (If you want to estimate losses, which I 
figure are ~1 W, they should all be added to the anomalous power by this 
method.)


The temperature rises throughout the day as you see in Fig. 7. In Fig. 9 we 
zoom in, and you can measure the water and wall temperature increase from hour 
1.0 to hour 2.0. This increase is 0.3°C, which means the power during this time 
is ~3.5 W (ignoring losses). That was all anomalous power; by hour 1.0, the 
effect of the 

Re: [Vo]:Heat from the pump would not be a problem even if we could detect it

2014-11-18 Thread Jed Rothwell
Here is some more info on the pump, that Mizuno just sent me:

IWAKI magnet pump, MD-6K-N
Max capacity: 8/9 ℓ/min
Max head: 1.0/1.4

100V 12W/60Hz, 12W/50Hz

He plugged it into the WattChecker which shows it is drawing 10.8 W. (I
thought it was 5 W just by feel. Not a bad guess!) Based on the efficiency
of the other MD 6 model (18 W in 3 W out), that would deliver ~1.8 W to the
water, but I expect this is less efficient. My guess is still 0.25 to 0.50
W because I think this system would detect 1.8 W and nothing shows up when
the pump alone is running. However much heat it adds, the losses exceed it.
That is what the data shows.

He is going to repeat the test where he runs it for several hours or a day
with just the pump. The last time he did that, there was less insulation so
it was not as sensitive, but I believe 1 W would have showed up.


Re: [Vo]:Heat from the pump would not be a problem even if we could detect it

2014-11-18 Thread Jed Rothwell
David Roberson dlrober...@aol.com wrote:

Jed, is it possible to calculate the amount of power that is being added to
 the water by looking at the system?  I assume that the water is not moving
 just prior to being accelerated to finally reach the speed that it is
 moving inside the pipe.  That may allow you to calculate the kinetic energy
 that must be imparted to it which would be deposited into the far tank.


It is continually looping around. The only work the pump needs to do is to
overcome friction. It has to lift the water a short distance, but the water
in the pipe is a siphon; the water goes right down again. The pump is just
above the Dewar.



   The frictional losses within the pipe would have to be supplied by the
 pump as well.  That heat would likely end up within the water instead of
 conducting through the hose surface.


To measure this, you can run water through a 16 m plastic pipe, 1 cm in
diameter at 8 L/min. I promise you will not find any measurable temperature
rise from the friction. Put the coil in a well insulated envelope.



 A good first start would be to calculate the kinetic portion of the pump
 power.   It does make me curious as to where they assume the 3 watts is
 being dissipated.


It turns out that is for another model, the MD-6. This is an MD-6K-N,
smaller, only 12 W max. It is not listed in the spec. sheet except to say,
Note: Bearings are not used on MD-6K-N/6ZK-N/10K-N models due to their
small size.

http://www.iwakipumps.com.vn/doc_viewer.aspx?fileName=/upload/file/md.pdf

I assume that means the bearings are not as good, so the ratio of input
power to output mechanical power is probably worse than 6:1.

As I said, Mizuno just measured the input electrical power at 10.8 W. I am
guessing the ratio is 20:1 (~0.5 W delivered) because otherwise we would
have seen the heat show up, I think.

I just looked at a 39 min. segment. Ambient starts higher than the water:
24.64 vrs. 24.54 deg C. Ambient goes up, the water does nothing. Then after
20 minutes ambient falls, the water does nothing until it abruptly rises a
little, about 0.08 deg C. Then it is flat. At the end ambient is 24.24,
water 24.68.

That does not look like ~1 W to me, but with all that noise who knows.
There are currents of warm and cool air blowing around and two gas heaters.
The ambient around the reactor could be as much as 0.3 deg C different from
what is recorded here. The water is well mixed and I am sure that
temperature is right, but I would not try to draw any conclusions from
this. Maybe 8 hours of data with nothing but the pump and reasonably stable
ambient will tell us something.

Anyway, however much the pump is delivering it is not enough to keep the
temperature from falling. Whereas after that 39 min segment, when I put a
tiny blip of 300 J (5 W for 1 min) the temperature rose from from 24.67 to
24.72 about 20 minutes later. Ambient hardly changed. 300 J over 20 minutes
is 0.25 W.

Later that day it looked like the first 39 minutes. Random movement by both
ambient and slight changes in the water. No clear trend. Certainly not 1 W
unaccounted for.

It is much too noisy to make any firm conclusions. You can only measure
higher power, where the water is much warmer than ambient, and heat losses
are in one direction only.

- Jed