http://git-wip-us.apache.org/repos/asf/incubator-madlib-site/blob/bed9253d/docs/v1.9.1/group__grp__linreg.html
----------------------------------------------------------------------
diff --git a/docs/v1.9.1/group__grp__linreg.html 
b/docs/v1.9.1/group__grp__linreg.html
new file mode 100644
index 0000000..5ca4bc8
--- /dev/null
+++ b/docs/v1.9.1/group__grp__linreg.html
@@ -0,0 +1,382 @@
+<!-- HTML header for doxygen 1.8.4-->
+<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd";>
+<html xmlns="http://www.w3.org/1999/xhtml";>
+<head>
+<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
+<meta http-equiv="X-UA-Compatible" content="IE=9"/>
+<meta name="generator" content="Doxygen 1.8.10"/>
+<meta name="keywords" content="madlib,postgres,greenplum,machine learning,data 
mining,deep learning,ensemble methods,data science,market basket 
analysis,affinity analysis,pca,lda,regression,elastic net,huber 
white,proportional hazards,k-means,latent dirichlet allocation,bayes,support 
vector machines,svm"/>
+<title>MADlib: Linear Regression</title>
+<link href="tabs.css" rel="stylesheet" type="text/css"/>
+<script type="text/javascript" src="jquery.js"></script>
+<script type="text/javascript" src="dynsections.js"></script>
+<link href="navtree.css" rel="stylesheet" type="text/css"/>
+<script type="text/javascript" src="resize.js"></script>
+<script type="text/javascript" src="navtreedata.js"></script>
+<script type="text/javascript" src="navtree.js"></script>
+<script type="text/javascript">
+  $(document).ready(initResizable);
+  $(window).load(resizeHeight);
+</script>
+<link href="search/search.css" rel="stylesheet" type="text/css"/>
+<script type="text/javascript" src="search/searchdata.js"></script>
+<script type="text/javascript" src="search/search.js"></script>
+<script type="text/javascript">
+  $(document).ready(function() { init_search(); });
+</script>
+<!-- hack in the navigation tree -->
+<script type="text/javascript" src="eigen_navtree_hacks.js"></script>
+<link href="doxygen.css" rel="stylesheet" type="text/css" />
+<link href="madlib_extra.css" rel="stylesheet" type="text/css"/>
+<!-- google analytics -->
+<script>
+  (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
+  (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new 
Date();a=s.createElement(o),
+  
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
+  })(window,document,'script','//www.google-analytics.com/analytics.js','ga');
+  ga('create', 'UA-45382226-1', 'madlib.net');
+  ga('send', 'pageview');
+</script>
+</head>
+<body>
+<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
+<div id="titlearea">
+<table cellspacing="0" cellpadding="0">
+ <tbody>
+ <tr style="height: 56px;">
+  <td id="projectlogo"><a href="http://madlib.net";><img alt="Logo" 
src="madlib.png" height="50" style="padding-left:0.5em;" border="0"/ ></a></td>
+  <td style="padding-left: 0.5em;">
+   <div id="projectname">
+   <span id="projectnumber">1.9.1</span>
+   </div>
+   <div id="projectbrief">User Documentation for MADlib</div>
+  </td>
+   <td>        <div id="MSearchBox" class="MSearchBoxInactive">
+        <span class="left">
+          <img id="MSearchSelect" src="search/mag_sel.png"
+               onmouseover="return searchBox.OnSearchSelectShow()"
+               onmouseout="return searchBox.OnSearchSelectHide()"
+               alt=""/>
+          <input type="text" id="MSearchField" value="Search" accesskey="S"
+               onfocus="searchBox.OnSearchFieldFocus(true)" 
+               onblur="searchBox.OnSearchFieldFocus(false)" 
+               onkeyup="searchBox.OnSearchFieldChange(event)"/>
+          </span><span class="right">
+            <a id="MSearchClose" 
href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" 
border="0" src="search/close.png" alt=""/></a>
+          </span>
+        </div>
+</td>
+ </tr>
+ </tbody>
+</table>
+</div>
+<!-- end header part -->
+<!-- Generated by Doxygen 1.8.10 -->
+<script type="text/javascript">
+var searchBox = new SearchBox("searchBox", "search",false,'Search');
+</script>
+</div><!-- top -->
+<div id="side-nav" class="ui-resizable side-nav-resizable">
+  <div id="nav-tree">
+    <div id="nav-tree-contents">
+      <div id="nav-sync" class="sync"></div>
+    </div>
+  </div>
+  <div id="splitbar" style="-moz-user-select:none;" 
+       class="ui-resizable-handle">
+  </div>
+</div>
+<script type="text/javascript">
+$(document).ready(function(){initNavTree('group__grp__linreg.html','');});
+</script>
+<div id="doc-content">
+<!-- window showing the filter options -->
+<div id="MSearchSelectWindow"
+     onmouseover="return searchBox.OnSearchSelectShow()"
+     onmouseout="return searchBox.OnSearchSelectHide()"
+     onkeydown="return searchBox.OnSearchSelectKey(event)">
+</div>
+
+<!-- iframe showing the search results (closed by default) -->
+<div id="MSearchResultsWindow">
+<iframe src="javascript:void(0)" frameborder="0" 
+        name="MSearchResults" id="MSearchResults">
+</iframe>
+</div>
+
+<div class="header">
+  <div class="headertitle">
+<div class="title">Linear Regression<div class="ingroups"><a class="el" 
href="group__grp__super.html">Supervised Learning</a> &raquo; <a class="el" 
href="group__grp__regml.html">Regression Models</a></div></div>  </div>
+</div><!--header-->
+<div class="contents">
+<div class="toc"><b>Contents</b> </p><ul>
+<li class="level1">
+<a href="#train">Training Function</a> </li>
+<li class="level1">
+<a href="#predict">Prediction Function</a> </li>
+<li class="level1">
+<a href="#examples">Examples</a> </li>
+<li class="level1">
+<a href="#background">Technical Background</a> </li>
+<li class="level1">
+<a href="#literature">Literature</a> </li>
+<li class="level1">
+<a href="#related">Related Topics</a> </li>
+</ul>
+</div><p>Linear regression models a linear relationship of a scalar dependent 
variable <img class="formulaInl" alt="$ y $" src="form_324.png"/> to one or 
more explanatory independent variables <img class="formulaInl" alt="$ x $" 
src="form_178.png"/> to build a model of coefficients.</p>
+<p><a class="anchor" id="train"></a></p><dl class="section user"><dt>Training 
Function</dt><dd></dd></dl>
+<p>The linear regression training function has the following syntax. </p><pre 
class="syntax">
+linregr_train( source_table,
+               out_table,
+               dependent_varname,
+               independent_varname,
+               grouping_cols,
+               heteroskedasticity_option
+             )
+</pre><p><b>Arguments</b> </p><dl class="arglist">
+<dt>source_table </dt>
+<dd><p class="startdd">TEXT. The name of the table containing the training 
data.</p>
+<p class="enddd"></p>
+</dd>
+<dt>out_table </dt>
+<dd><p class="startdd">TEXT. Name of the generated table containing the output 
model.</p>
+<p>The output table contains the following columns. </p><table  class="output">
+<tr>
+<th>&lt;...&gt; </th><td>Any grouping columns provided during training. 
Present only if the grouping option is used.  </td></tr>
+<tr>
+<th>coef </th><td>FLOAT8[]. Vector of the coefficients of the regression.  
</td></tr>
+<tr>
+<th>r2 </th><td>FLOAT8. R-squared coefficient of determination of the model.  
</td></tr>
+<tr>
+<th>std_err </th><td>FLOAT8[]. Vector of the standard error of the 
coefficients.  </td></tr>
+<tr>
+<th>t_stats </th><td>FLOAT8[]. Vector of the t-statistics of the coefficients. 
 </td></tr>
+<tr>
+<th>p_values </th><td>FLOAT8[]. Vector of the p-values of the coefficients.  
</td></tr>
+<tr>
+<th>condition_no </th><td>FLOAT8 array. The condition number of the <img 
class="formulaInl" alt="$X^{*}X$" src="form_325.png"/> matrix. A high condition 
number is usually an indication that there may be some numeric instability in 
the result yielding a less reliable model. A high condition number often 
results when there is a significant amount of colinearity in the underlying 
design matrix, in which case other regression techniques, such as elastic net 
regression, may be more appropriate.  </td></tr>
+<tr>
+<th>bp_stats </th><td>FLOAT8. The Breush-Pagan statistic of heteroskedacity. 
Present only if the heteroskedacity argument was set to True when the model was 
trained.  </td></tr>
+<tr>
+<th>bp_p_value </th><td>FLOAT8. The Breush-Pagan calculated p-value. Present 
only if the heteroskedacity parameter was set to True when the model was 
trained.  </td></tr>
+<tr>
+<th>num_rows_processed </th><td>INTEGER. The number of rows that are actually 
used in each group.  </td></tr>
+<tr>
+<th>num_missing_rows_skipped </th><td>INTEGER. The number of rows that have 
NULL values in the dependent and independent variables, and were skipped in the 
computation for each group. </td></tr>
+</table>
+<p class="enddd">A summary table named &lt;out_table&gt;_summary is created 
together with the output table. It has the following columns: </p><table  
class="output">
+<tr>
+<th>source_table </th><td>The data source table name </td></tr>
+<tr>
+<th>out_table </th><td>The output table name </td></tr>
+<tr>
+<th>dependent_varname </th><td>The dependent variable </td></tr>
+<tr>
+<th>independent_varname </th><td>The independent variables </td></tr>
+<tr>
+<th>num_rows_processed </th><td>The total number of rows that were used in the 
computation. </td></tr>
+<tr>
+<th>num_missing_rows_skipped </th><td>The total number of rows that were 
skipped because of NULL values in them. </td></tr>
+</table>
+</dd>
+<dt></dt>
+<dd><dl class="section note"><dt>Note</dt><dd>For p-values, we just return the 
computation result directly. Other statistical packages, like 'R', produce the 
same result, but on printing the result to screen, another format function is 
used and any p-value that is smaller than the machine epsilon (the smallest 
positive floating-point number 'x' such that '1 + x != 1') will be printed on 
screen as "&lt; xxx" (xxx is the value of the machine epsilon). Although the 
result may look different, they are in fact the same. </dd></dl>
+</dd>
+<dt>dependent_varname </dt>
+<dd><p class="startdd">TEXT. Expression to evaluate for the dependent 
variable.</p>
+<p class="enddd"></p>
+</dd>
+<dt>independent_varname </dt>
+<dd><p class="startdd">TEXT. Expression list to evaluate for the independent 
variables. An intercept variable is not assumed. It is common to provide an 
explicit intercept term by including a single constant <code>1</code> term in 
the independent variable list.</p>
+<p class="enddd"></p>
+</dd>
+<dt>grouping_cols (optional) </dt>
+<dd><p class="startdd">TEXT, default: NULL. An expression list used to group 
the input dataset into discrete groups, running one regression per group. 
Similar to the SQL <code>GROUP BY</code> clause. When this value is null, no 
grouping is used and a single result model is generated.</p>
+<p class="enddd"></p>
+</dd>
+<dt>heteroskedasticity_option (optional) </dt>
+<dd>BOOLEAN, default: FALSE. When TRUE, the heteroskedasticity of the model is 
also calculated and returned with the results. </dd>
+</dl>
+<p><a class="anchor" id="warning"></a></p><dl class="section 
warning"><dt>Warning</dt><dd>The aggregate 'linregr' has been deprecated in 
favor of the function 'linregr_train'. If the aggregate 'linregr' is used to 
output the results of linear regression to a table, it is recommended to follow 
the general pattern shown below (replace text within '&lt;...&gt;' with the 
appropriate variable names). <pre class="syntax">
+CREATE TABLE &lt;output table&gt; AS
+SELECT (r).*
+FROM (
+    SELECT linregr(&lt;dependent variable&gt;, &lt;independent variable&gt;) 
as r
+    FROM &lt;source table&gt;
+    ) q;
+</pre></dd></dl>
+<p><a class="anchor" id="predict"></a></p><dl class="section 
user"><dt>Prediction Function</dt><dd><pre class="syntax">
+linregr_predict(coef, col_ind)
+</pre> <b>Arguments</b> <dl class="arglist">
+<dt>coef </dt>
+<dd><p class="startdd">FLOAT8[]. Vector of the coefficients of regression.</p>
+<p class="enddd"></p>
+</dd>
+<dt>col_ind </dt>
+<dd><p class="startdd">FLOAT8[]. An array containing the independent variable 
column names. </p>
+<p class="enddd"><a class="anchor" id="examples"></a></p>
+</dd>
+</dl>
+</dd></dl>
+<dl class="section user"><dt>Examples</dt><dd><ol type="1">
+<li>Create an input data set. <pre class="example">
+CREATE TABLE houses (id INT, tax INT, bedroom INT, bath FLOAT, price INT,
+            size INT, lot INT);
+COPY houses FROM STDIN WITH DELIMITER '|';
+  1 |  590 |       2 |    1 |  50000 |  770 | 22100
+  2 | 1050 |       3 |    2 |  85000 | 1410 | 12000
+  3 |   20 |       3 |    1 |  22500 | 1060 |  3500
+  4 |  870 |       2 |    2 |  90000 | 1300 | 17500
+  5 | 1320 |       3 |    2 | 133000 | 1500 | 30000
+  6 | 1350 |       2 |    1 |  90500 |  820 | 25700
+  7 | 2790 |       3 |  2.5 | 260000 | 2130 | 25000
+  8 |  680 |       2 |    1 | 142500 | 1170 | 22000
+  9 | 1840 |       3 |    2 | 160000 | 1500 | 19000
+ 10 | 3680 |       4 |    2 | 240000 | 2790 | 20000
+ 11 | 1660 |       3 |    1 |  87000 | 1030 | 17500
+ 12 | 1620 |       3 |    2 | 118600 | 1250 | 20000
+ 13 | 3100 |       3 |    2 | 140000 | 1760 | 38000
+ 14 | 2070 |       2 |    3 | 148000 | 1550 | 14000
+ 15 |  650 |       3 |  1.5 |  65000 | 1450 | 12000
+\.
+</pre></li>
+<li>Train a regression model. First, we generate a single regression for all 
data. <pre class="example">
+SELECT madlib.linregr_train( 'houses',
+                             'houses_linregr',
+                             'price',
+                             'ARRAY[1, tax, bath, size]'
+                           );
+</pre> (Note that in this example we are dynamically creating the array of 
independent variables from column names. If you have large numbers of 
independent variables beyond the PostgreSQL limit of maximum columns per table, 
you would pre-build the arrays and store them in a single column.)</li>
+<li>Next we generate three output models, one for each value of "bedroom". 
<pre class="example">
+SELECT madlib.linregr_train( 'houses',
+                             'houses_linregr_bedroom',
+                             'price',
+                             'ARRAY[1, tax, bath, size]',
+                             'bedroom'
+                           );
+</pre></li>
+<li>Examine the resulting models. <pre class="example">
+-- Set extended display on for easier reading of output
+\x ON
+SELECT * FROM houses_linregr;
+</pre> Result: <pre class="result">
+-[ RECORD 1 
]+---------------------------------------------------------------------------
+coef         | 
{-12849.4168959872,28.9613922651765,10181.6290712648,50.516894915354}
+r2           | 0.768577580597443
+std_err      | 
{33453.0344331391,15.8992104963997,19437.7710925923,32.928023174087}
+t_stats      | 
{-0.38410317968819,1.82156166004184,0.523806408809133,1.53416118083605}
+p_values     | 
{0.708223134615422,0.0958005827189772,0.610804093526536,0.153235085548186}
+condition_no | 9002.50457085737
+</pre></li>
+<li>View the results grouped by bedroom. <pre class="example">
+SELECT * FROM houses_linregr_bedroom;
+</pre> Result: <pre class="result">
+-[ RECORD 1 
]+--------------------------------------------------------------------------
+bedroom      | 2
+coef         | 
{-84242.0345406597,55.4430144648696,-78966.9753675319,225.611910021192}
+r2           | 0.968809546465313
+std_err      | 
{35018.9991665742,19.5731125320686,23036.8071292552,49.0448678148784}
+t_stats      | 
{-2.40560942761235,2.83261103077151,-3.42786111480046,4.60011251070697}
+p_values     | 
{0.250804617665239,0.21605133377602,0.180704400437373,0.136272031474122}
+condition_no | 10086.1048721726
+-[ RECORD 2 
]+--------------------------------------------------------------------------
+bedroom      | 4
+coef         | 
{0.0112536020318378,41.4132554771633,0.0225072040636757,31.3975496688276}
+r2           | 1
+std_err      | {0,0,0,0}
+t_stats      | {Infinity,Infinity,Infinity,Infinity}
+p_values     |
+condition_no | Infinity
+-[ RECORD 3 
]+--------------------------------------------------------------------------
+bedroom      | 3
+coef         | 
{-88155.8292501601,27.1966436294429,41404.0293363612,62.637521075324}
+r2           | 0.841699901311252
+std_err      | 
{57867.9999702625,17.8272309154689,43643.1321511114,70.8506824863954}
+t_stats      | 
{-1.52339512849005,1.52556747362508,0.948695185143966,0.884077878676067}
+p_values     | 
{0.188161432894871,0.187636685729869,0.386340032374927,0.417132778705789}
+condition_no | 11722.6225642147
+</pre> Alternatively you can unnest the results for easier reading of output. 
<pre class="example">
+\x OFF
+SELECT unnest(ARRAY['intercept','tax','bath','size']) as attribute,
+       unnest(coef) as coefficient,
+       unnest(std_err) as standard_error,
+       unnest(t_stats) as t_stat,
+       unnest(p_values) as pvalue
+FROM houses_linregr;
+</pre></li>
+<li>Use the prediction function to evaluate residuals. <pre class="example">
+SELECT houses.*,
+       madlib.linregr_predict( ARRAY[1,tax,bath,size],
+                               m.coef
+                             ) as predict,
+        price -
+          madlib.linregr_predict( ARRAY[1,tax,bath,size],
+                                  m.coef
+                                ) as residual
+FROM houses, houses_linregr m;
+</pre></li>
+</ol>
+</dd></dl>
+<p><a class="anchor" id="notes"></a></p><dl class="section 
user"><dt>Note</dt><dd>All table names can be optionally schema qualified 
(current_schemas() would be searched if a schema name is not provided) and all 
table and column names should follow case-sensitivity and quoting rules per the 
database. (For instance, 'mytable' and 'MyTable' both resolve to the same 
entity, i.e. 'mytable'. If mixed-case or multi-byte characters are desired for 
entity names then the string should be double-quoted; in this case the input 
would be '"MyTable"').</dd></dl>
+<p><a class="anchor" id="background"></a></p><dl class="section 
user"><dt>Technical Background</dt><dd></dd></dl>
+<p>Ordinary least-squares (OLS) linear regression refers to a stochastic model 
in which the conditional mean of the dependent variable (usually denoted <img 
class="formulaInl" alt="$ Y $" src="form_3.png"/>) is an affine function of the 
vector of independent variables (usually denoted <img class="formulaInl" alt="$ 
\boldsymbol x $" src="form_58.png"/>). That is, </p><p class="formulaDsp">
+<img class="formulaDsp" alt="\[ E[Y \mid \boldsymbol x] = \boldsymbol c^T 
\boldsymbol x \]" src="form_326.png"/>
+</p>
+<p> for some unknown vector of coefficients <img class="formulaInl" alt="$ 
\boldsymbol c $" src="form_78.png"/>. The assumption is that the residuals are 
i.i.d. distributed Gaussians. That is, the (conditional) probability density of 
<img class="formulaInl" alt="$ Y $" src="form_3.png"/> is given by </p><p 
class="formulaDsp">
+<img class="formulaDsp" alt="\[ f(y \mid \boldsymbol x) = \frac{1}{\sqrt{2 \pi 
\sigma^2}} \cdot \exp\left(-\frac{1}{2 \sigma^2} \cdot (y - \boldsymbol x^T 
\boldsymbol c)^2 \right) \,. \]" src="form_327.png"/>
+</p>
+<p> OLS linear regression finds the vector of coefficients <img 
class="formulaInl" alt="$ \boldsymbol c $" src="form_78.png"/> that maximizes 
the likelihood of the observations.</p>
+<p>Let</p><ul>
+<li><img class="formulaInl" alt="$ \boldsymbol y \in \mathbf R^n $" 
src="form_328.png"/> denote the vector of observed dependent variables, with 
<img class="formulaInl" alt="$ n $" src="form_10.png"/> rows, containing the 
observed values of the dependent variable,</li>
+<li><img class="formulaInl" alt="$ X \in \mathbf R^{n \times k} $" 
src="form_98.png"/> denote the design matrix with <img class="formulaInl" 
alt="$ k $" src="form_97.png"/> columns and <img class="formulaInl" alt="$ n $" 
src="form_10.png"/> rows, containing all observed vectors of independent 
variables. <img class="formulaInl" alt="$ \boldsymbol x_i $" 
src="form_99.png"/> as rows,</li>
+<li><img class="formulaInl" alt="$ X^T $" src="form_329.png"/> denote the 
transpose of <img class="formulaInl" alt="$ X $" src="form_2.png"/>,</li>
+<li><img class="formulaInl" alt="$ X^+ $" src="form_330.png"/> denote the 
pseudo-inverse of <img class="formulaInl" alt="$ X $" src="form_2.png"/>.</li>
+</ul>
+<p>Maximizing the likelihood is equivalent to maximizing the log-likelihood 
<img class="formulaInl" alt="$ \sum_{i=1}^n \log f(y_i \mid \boldsymbol x_i) $" 
src="form_331.png"/>, which simplifies to minimizing the <b>residual sum of 
squares</b> <img class="formulaInl" alt="$ RSS $" src="form_332.png"/> (also 
called sum of squared residuals or sum of squared errors of prediction), </p><p 
class="formulaDsp">
+<img class="formulaDsp" alt="\[ RSS = \sum_{i=1}^n ( y_i - \boldsymbol c^T 
\boldsymbol x_i )^2 = (\boldsymbol y - X \boldsymbol c)^T (\boldsymbol y - X 
\boldsymbol c) \,. \]" src="form_333.png"/>
+</p>
+<p> The first-order conditions yield that the <img class="formulaInl" alt="$ 
RSS $" src="form_332.png"/> is minimized at </p><p class="formulaDsp">
+<img class="formulaDsp" alt="\[ \boldsymbol c = (X^T X)^+ X^T \boldsymbol y 
\,. \]" src="form_334.png"/>
+</p>
+<p>Computing the <b>total sum of squares</b> <img class="formulaInl" alt="$ 
TSS $" src="form_335.png"/>, the <b>explained sum of squares</b> <img 
class="formulaInl" alt="$ ESS $" src="form_336.png"/> (also called the 
regression sum of squares), and the <b>coefficient of determination</b> <img 
class="formulaInl" alt="$ R^2 $" src="form_337.png"/> is done according to the 
following formulas: </p><p class="formulaDsp">
+<img class="formulaDsp" alt="\begin{align*} ESS &amp; = \boldsymbol y^T X 
\boldsymbol c - \frac{ \| y \|_1^2 }{n} \\ TSS &amp; = \sum_{i=1}^n y_i^2 - 
\frac{ \| y \|_1^2 }{n} \\ R^2 &amp; = \frac{ESS}{TSS} \end{align*}" 
src="form_338.png"/>
+</p>
+<p> Note: The last equality follows from the definition <img 
class="formulaInl" alt="$ R^2 = 1 - \frac{RSS}{TSS} $" src="form_339.png"/> and 
the fact that for linear regression <img class="formulaInl" alt="$ TSS = RSS + 
ESS $" src="form_340.png"/>. A proof of the latter can be found, e.g., at: <a 
href="http://en.wikipedia.org/wiki/Sum_of_squares";>http://en.wikipedia.org/wiki/Sum_of_squares</a></p>
+<p>We estimate the variance <img class="formulaInl" alt="$ Var[Y - \boldsymbol 
c^T \boldsymbol x \mid \boldsymbol x] $" src="form_341.png"/> as </p><p 
class="formulaDsp">
+<img class="formulaDsp" alt="\[ \sigma^2 = \frac{RSS}{n - k} \]" 
src="form_342.png"/>
+</p>
+<p> and compute the t-statistic for coefficient <img class="formulaInl" alt="$ 
i $" src="form_32.png"/> as </p><p class="formulaDsp">
+<img class="formulaDsp" alt="\[ t_i = \frac{c_i}{\sqrt{\sigma^2 \cdot \left( 
(X^T X)^{-1} \right)_{ii} }} \,. \]" src="form_343.png"/>
+</p>
+<p>The <img class="formulaInl" alt="$ p $" src="form_110.png"/>-value for 
coefficient <img class="formulaInl" alt="$ i $" src="form_32.png"/> gives the 
probability of seeing a value at least as extreme as the one observed, provided 
that the null hypothesis ( <img class="formulaInl" alt="$ c_i = 0 $" 
src="form_111.png"/>) is true. Letting <img class="formulaInl" alt="$ F_\nu $" 
src="form_344.png"/> denote the cumulative density function of student-t with 
<img class="formulaInl" alt="$ \nu $" src="form_274.png"/> degrees of freedom, 
the <img class="formulaInl" alt="$ p $" src="form_110.png"/>-value for 
coefficient <img class="formulaInl" alt="$ i $" src="form_32.png"/> is 
therefore </p><p class="formulaDsp">
+<img class="formulaDsp" alt="\[ p_i = \Pr(|T| \geq |t_i|) = 2 \cdot (1 - F_{n 
- k}( |t_i| )) \]" src="form_345.png"/>
+</p>
+<p> where <img class="formulaInl" alt="$ T $" src="form_304.png"/> is a 
student-t distributed random variable with mean 0.</p>
+<p>The condition number [2] <img class="formulaInl" alt="$ \kappa(X) = 
\|X\|_2\cdot\|X^{-1}\|_2$" src="form_346.png"/> is computed as the product of 
two spectral norms [3]. The spectral norm of a matrix <img class="formulaInl" 
alt="$X$" src="form_347.png"/> is the largest singular value of <img 
class="formulaInl" alt="$X$" src="form_347.png"/> i.e. the square root of the 
largest eigenvalue of the positive-semidefinite matrix <img class="formulaInl" 
alt="$X^{*}X$" src="form_325.png"/>:</p>
+<p class="formulaDsp">
+<img class="formulaDsp" alt="\[ \|X\|_2 = 
\sqrt{\lambda_{\max}\left(X^{*}X\right)}\ , \]" src="form_348.png"/>
+</p>
+<p> where <img class="formulaInl" alt="$X^{*}$" src="form_349.png"/> is the 
conjugate transpose of <img class="formulaInl" alt="$X$" src="form_347.png"/>. 
The condition number of a linear regression problem is a worst-case measure of 
how sensitive the result is to small perturbations of the input. A large 
condition number (say, more than 1000) indicates the presence of significant 
multicollinearity.</p>
+<p><a class="anchor" id="literature"></a></p><dl class="section 
user"><dt>Literature</dt><dd></dd></dl>
+<p>[1] Cosma Shalizi: Statistics 36-350: Data Mining, Lecture Notes, 21 
October 2009, <a 
href="http://www.stat.cmu.edu/~cshalizi/350/lectures/17/lecture-17.pdf";>http://www.stat.cmu.edu/~cshalizi/350/lectures/17/lecture-17.pdf</a></p>
+<p>[2] Wikipedia: Condition Number, <a 
href="http://en.wikipedia.org/wiki/Condition_number";>http://en.wikipedia.org/wiki/Condition_number</a>.</p>
+<p>[3] Wikipedia: Spectral Norm, <a 
href="http://en.wikipedia.org/wiki/Spectral_norm#Spectral_norm";>http://en.wikipedia.org/wiki/Spectral_norm#Spectral_norm</a></p>
+<p>[4] Wikipedia: Breusch–Pagan test, <a 
href="http://en.wikipedia.org/wiki/Breusch%E2%80%93Pagan_test";>http://en.wikipedia.org/wiki/Breusch%E2%80%93Pagan_test</a></p>
+<p>[5] Wikipedia: Heteroscedasticity-consistent standard errors, <a 
href="http://en.wikipedia.org/wiki/Heteroscedasticity-consistent_standard_errors";>http://en.wikipedia.org/wiki/Heteroscedasticity-consistent_standard_errors</a></p>
+<p><a class="anchor" id="related"></a></p><dl class="section user"><dt>Related 
Topics</dt><dd></dd></dl>
+<p><a class="el" href="group__grp__robust.html">Robust Variance</a></p>
+<p><a class="el" href="group__grp__clustered__errors.html">Clustered 
Variance</a></p>
+<p><a class="el" href="group__grp__validation.html">Cross Validation</a></p>
+<p>File <a class="el" href="linear_8sql__in.html" title="SQL functions for 
linear regression. ">linear.sql_in</a>, source file for the SQL functions</p>
+</div><!-- contents -->
+</div><!-- doc-content -->
+<!-- start footer part -->
+<div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
+  <ul>
+    <li class="footer">Generated on Tue Sep 20 2016 11:27:01 for MADlib by
+    <a href="http://www.doxygen.org/index.html";>
+    <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.10 </li>
+  </ul>
+</div>
+</body>
+</html>

http://git-wip-us.apache.org/repos/asf/incubator-madlib-site/blob/bed9253d/docs/v1.9.1/group__grp__lmf.html
----------------------------------------------------------------------
diff --git a/docs/v1.9.1/group__grp__lmf.html b/docs/v1.9.1/group__grp__lmf.html
new file mode 100644
index 0000000..0a3f03f
--- /dev/null
+++ b/docs/v1.9.1/group__grp__lmf.html
@@ -0,0 +1,272 @@
+<!-- HTML header for doxygen 1.8.4-->
+<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd";>
+<html xmlns="http://www.w3.org/1999/xhtml";>
+<head>
+<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
+<meta http-equiv="X-UA-Compatible" content="IE=9"/>
+<meta name="generator" content="Doxygen 1.8.10"/>
+<meta name="keywords" content="madlib,postgres,greenplum,machine learning,data 
mining,deep learning,ensemble methods,data science,market basket 
analysis,affinity analysis,pca,lda,regression,elastic net,huber 
white,proportional hazards,k-means,latent dirichlet allocation,bayes,support 
vector machines,svm"/>
+<title>MADlib: Low-rank Matrix Factorization</title>
+<link href="tabs.css" rel="stylesheet" type="text/css"/>
+<script type="text/javascript" src="jquery.js"></script>
+<script type="text/javascript" src="dynsections.js"></script>
+<link href="navtree.css" rel="stylesheet" type="text/css"/>
+<script type="text/javascript" src="resize.js"></script>
+<script type="text/javascript" src="navtreedata.js"></script>
+<script type="text/javascript" src="navtree.js"></script>
+<script type="text/javascript">
+  $(document).ready(initResizable);
+  $(window).load(resizeHeight);
+</script>
+<link href="search/search.css" rel="stylesheet" type="text/css"/>
+<script type="text/javascript" src="search/searchdata.js"></script>
+<script type="text/javascript" src="search/search.js"></script>
+<script type="text/javascript">
+  $(document).ready(function() { init_search(); });
+</script>
+<!-- hack in the navigation tree -->
+<script type="text/javascript" src="eigen_navtree_hacks.js"></script>
+<link href="doxygen.css" rel="stylesheet" type="text/css" />
+<link href="madlib_extra.css" rel="stylesheet" type="text/css"/>
+<!-- google analytics -->
+<script>
+  (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
+  (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new 
Date();a=s.createElement(o),
+  
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
+  })(window,document,'script','//www.google-analytics.com/analytics.js','ga');
+  ga('create', 'UA-45382226-1', 'madlib.net');
+  ga('send', 'pageview');
+</script>
+</head>
+<body>
+<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
+<div id="titlearea">
+<table cellspacing="0" cellpadding="0">
+ <tbody>
+ <tr style="height: 56px;">
+  <td id="projectlogo"><a href="http://madlib.net";><img alt="Logo" 
src="madlib.png" height="50" style="padding-left:0.5em;" border="0"/ ></a></td>
+  <td style="padding-left: 0.5em;">
+   <div id="projectname">
+   <span id="projectnumber">1.9.1</span>
+   </div>
+   <div id="projectbrief">User Documentation for MADlib</div>
+  </td>
+   <td>        <div id="MSearchBox" class="MSearchBoxInactive">
+        <span class="left">
+          <img id="MSearchSelect" src="search/mag_sel.png"
+               onmouseover="return searchBox.OnSearchSelectShow()"
+               onmouseout="return searchBox.OnSearchSelectHide()"
+               alt=""/>
+          <input type="text" id="MSearchField" value="Search" accesskey="S"
+               onfocus="searchBox.OnSearchFieldFocus(true)" 
+               onblur="searchBox.OnSearchFieldFocus(false)" 
+               onkeyup="searchBox.OnSearchFieldChange(event)"/>
+          </span><span class="right">
+            <a id="MSearchClose" 
href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" 
border="0" src="search/close.png" alt=""/></a>
+          </span>
+        </div>
+</td>
+ </tr>
+ </tbody>
+</table>
+</div>
+<!-- end header part -->
+<!-- Generated by Doxygen 1.8.10 -->
+<script type="text/javascript">
+var searchBox = new SearchBox("searchBox", "search",false,'Search');
+</script>
+</div><!-- top -->
+<div id="side-nav" class="ui-resizable side-nav-resizable">
+  <div id="nav-tree">
+    <div id="nav-tree-contents">
+      <div id="nav-sync" class="sync"></div>
+    </div>
+  </div>
+  <div id="splitbar" style="-moz-user-select:none;" 
+       class="ui-resizable-handle">
+  </div>
+</div>
+<script type="text/javascript">
+$(document).ready(function(){initNavTree('group__grp__lmf.html','');});
+</script>
+<div id="doc-content">
+<!-- window showing the filter options -->
+<div id="MSearchSelectWindow"
+     onmouseover="return searchBox.OnSearchSelectShow()"
+     onmouseout="return searchBox.OnSearchSelectHide()"
+     onkeydown="return searchBox.OnSearchSelectKey(event)">
+</div>
+
+<!-- iframe showing the search results (closed by default) -->
+<div id="MSearchResultsWindow">
+<iframe src="javascript:void(0)" frameborder="0" 
+        name="MSearchResults" id="MSearchResults">
+</iframe>
+</div>
+
+<div class="header">
+  <div class="headertitle">
+<div class="title">Low-rank Matrix Factorization<div class="ingroups"><a 
class="el" href="group__grp__datatrans.html">Data Types and Transformations</a> 
&raquo; <a class="el" href="group__grp__arraysmatrix.html">Arrays and 
Matrices</a> &raquo; <a class="el" 
href="group__grp__matrix__factorization.html">Matrix 
Factorization</a></div></div>  </div>
+</div><!--header-->
+<div class="contents">
+<div class="toc"><b>Contents</b> </p><ul>
+<li>
+<a href="#syntax">Function Syntax</a> </li>
+<li>
+<a href="#examples">Examples</a> </li>
+<li>
+<a href="#literature">Literature</a> </li>
+</ul>
+</div><p>This module implements "factor model" for representing an incomplete 
matrix using a low-rank approximation [1]. Mathematically, this model seeks to 
find matrices U and V (also referred as factors) that, for any given incomplete 
matrix A, minimizes:</p>
+<p class="formulaDsp">
+<img class="formulaDsp" alt="\[ \|\boldsymbol A - \boldsymbol UV^{T} \|_2 \]" 
src="form_46.png"/>
+</p>
+<p>subject to <img class="formulaInl" alt="$rank(\boldsymbol UV^{T}) \leq r$" 
src="form_47.png"/>, where <img class="formulaInl" alt="$\|\cdot\|_2$" 
src="form_48.png"/> denotes the Frobenius norm. Let <img class="formulaInl" 
alt="$A$" src="form_41.png"/> be a <img class="formulaInl" alt="$m \times n$" 
src="form_49.png"/> matrix, then <img class="formulaInl" alt="$U$" 
src="form_50.png"/> will be <img class="formulaInl" alt="$m \times r$" 
src="form_51.png"/> and <img class="formulaInl" alt="$V$" src="form_52.png"/> 
will be <img class="formulaInl" alt="$n \times r$" src="form_53.png"/>, in 
dimension, and <img class="formulaInl" alt="$1 \leq r \ll \min(m, n)$" 
src="form_54.png"/>. This model is not intended to do the full decomposition, 
or to be used as part of inverse procedure. This model has been widely used in 
recommendation systems (e.g., Netflix [2]) and feature selection (e.g., image 
processing [3]).</p>
+<p><a class="anchor" id="syntax"></a></p><dl class="section user"><dt>Function 
Syntax</dt><dd></dd></dl>
+<p>Low-rank matrix factorization of an incomplete matrix into two factors.</p>
+<pre class="syntax">
+lmf_igd_run( rel_output,
+             rel_source,
+             col_row,
+             col_column,
+             col_value,
+             row_dim,
+             column_dim,
+             max_rank,
+             stepsize,
+             scale_factor,
+             num_iterations,
+             tolerance
+           )
+</pre><p> <b>Arguments</b> </p><dl class="arglist">
+<dt>rel_output </dt>
+<dd><p class="startdd">TEXT. The name of the table to receive the output.</p>
+<p>Output factors matrix U and V are in a flattened format. </p><pre>RESULT AS 
(
+        matrix_u    DOUBLE PRECISION[],
+        matrix_v    DOUBLE PRECISION[],
+        rmse        DOUBLE PRECISION
+);</pre><p class="enddd">Features correspond to row i is 
<code>matrix_u[i:i][1:r]</code>. Features correspond to column j is 
<code>matrix_v[j:j][1:r]</code>.  </p>
+</dd>
+<dt>rel_source </dt>
+<dd><p class="startdd">TEXT. The name of the table containing the input 
data.</p>
+<p>The input matrix&gt; is expected to be of the following form: 
</p><pre>{TABLE|VIEW} <em>input_table</em> (
+    <em>row</em>    INTEGER,
+    <em>col</em>    INTEGER,
+    <em>value</em>  DOUBLE PRECISION
+)</pre><p class="enddd">Input is contained in a table that describes an 
incomplete matrix, with available entries specified as (row, column, value). 
The input matrix should be 1-based, which means row &gt;= 1, and col &gt;= 1. 
NULL values are not expected.  </p>
+</dd>
+<dt>col_row </dt>
+<dd>TEXT. The name of the column containing the row number. </dd>
+<dt>col_column </dt>
+<dd>TEXT. The name of the column containing the column number. </dd>
+<dt>col_value </dt>
+<dd>DOUBLE PRECISION. The value at (row, col). </dd>
+<dt>row_dim (optional) </dt>
+<dd>INTEGER, default: "SELECT max(col_row) FROM rel_source". The number of 
columns in the matrix. </dd>
+<dt>column_dim (optional) </dt>
+<dd>INTEGER, default: "SELECT max(col_col) FROM rel_source". The number of 
rows in the matrix. </dd>
+<dt>max_rank </dt>
+<dd>INTEGER, default: 20. The rank of desired approximation. </dd>
+<dt>stepsize (optional) </dt>
+<dd>DOUBLE PRECISION, default: 0.01. Hyper-parameter that decides how 
aggressive the gradient steps are.  </dd>
+<dt>scale_factor (optional) </dt>
+<dd>DOUBLE PRECISION, default: 0.1. Hyper-parameter that decides scale of 
initial factors. </dd>
+<dt>num_iterations (optional) </dt>
+<dd>INTEGER, default: 10. Maximum number if iterations to perform regardless 
of convergence. </dd>
+<dt>tolerance (optional) </dt>
+<dd>DOUBLE PRECISION, default: 0.0001. Acceptable level of error in 
convergence. </dd>
+</dl>
+<p><a class="anchor" id="examples"></a></p><dl class="section 
user"><dt>Examples</dt><dd></dd></dl>
+<ol type="1">
+<li>Prepare an input table/view: <pre class="example">
+DROP TABLE IF EXISTS lmf_data;
+CREATE TABLE lmf_data (
+ row INT,
+ col INT,
+ val FLOAT8
+);
+</pre></li>
+<li>Populate the input table with some data. <pre class="example">
+INSERT INTO lmf_data VALUES (1, 1, 5.0);
+INSERT INTO lmf_data VALUES (3, 100, 1.0);
+INSERT INTO lmf_data VALUES (999, 10000, 2.0);
+</pre></li>
+<li>Call the <a class="el" 
href="lmf_8sql__in.html#ac1acb1f0e1f7008118f21c83546a4602" title="Low-rank 
matrix factorization of a incomplete matrix into two factors. 
">lmf_igd_run()</a> stored procedure. <pre class="example">
+DROP TABLE IF EXISTS lmf_model;
+SELECT madlib.lmf_igd_run( 'lmf_model',
+                           'lmf_data',
+                           'row',
+                           'col',
+                           'val',
+                           999,
+                           10000,
+                           3,
+                           0.1,
+                           2,
+                           10,
+                           1e-9
+                         );
+</pre> Example result (the exact result may not be the same). <pre 
class="result">
+NOTICE:
+Finished low-rank matrix factorization using incremental gradient
+DETAIL:
+   table : lmf_data (row, col, val)
+Results:
+   RMSE = 0.0145966345300041
+Output:
+   view : SELECT * FROM lmf_model WHERE id = 1
+ lmf_igd_run
+&#160;-----------
+           1
+ (1 row)
+</pre></li>
+<li>Sanity check of the result. You may need a model id returned and also 
indicated by the function <a class="el" 
href="lmf_8sql__in.html#ac1acb1f0e1f7008118f21c83546a4602" title="Low-rank 
matrix factorization of a incomplete matrix into two factors. 
">lmf_igd_run()</a>, assuming 1 here: <pre class="example">
+SELECT array_dims(matrix_u) AS u_dims, array_dims(matrix_v) AS v_dims
+FROM lmf_model
+WHERE id = 1;
+</pre> Result: <pre class="result">
+     u_dims    |     v_dims
+ --------------+----------------
+  [1:999][1:3] | [1:10000][1:3]
+ (1 row)
+</pre></li>
+<li>Query the result value. <pre class="example">
+SELECT matrix_u[2:2][1:3] AS row_2_features
+FROM lmf_model
+WHERE id = 1;
+</pre> Example output (the exact result may not be the same): <pre 
class="result">
+                       row_2_features
+&#160;---------------------------------------------------------
+  {{1.12030523084104,0.522217971272767,0.0264869043603539}}
+ (1 row)
+</pre></li>
+<li>Make prediction of a missing entry (row=2, col=7654). <pre class="example">
+SELECT madlib.array_dot(
+    matrix_u[2:2][1:3],
+    matrix_v[7654:7654][1:3]
+    ) AS row_2_col_7654
+FROM lmf_model
+WHERE id = 1;
+</pre> Example output (the exact result may not be the same due the randomness 
of the algorithm): <pre class="result">
+   row_2_col_7654
+&#160;------------------
+  1.3201582940851
+ (1 row)
+</pre></li>
+</ol>
+<p><a class="anchor" id="literature"></a></p><dl class="section 
user"><dt>Literature</dt><dd></dd></dl>
+<p>[1] N. Srebro and T. Jaakkola. “Weighted Low-Rank Approximations.” In: 
ICML. Ed. by T. Fawcett and N. Mishra. AAAI Press, 2003, pp. 720–727. isbn: 
1-57735-189-4.</p>
+<p>[2] Simon Funk, Netflix Update: Try This at Home, December 11 2006, <a 
href="http://sifter.org/~simon/journal/20061211.html";>http://sifter.org/~simon/journal/20061211.html</a></p>
+<p>[3] J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma. “Robust Principal 
Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex 
Optimization.” In: NIPS. Ed. by Y. Bengio, D. Schuurmans, J. D. Lafferty, C. 
K. I. Williams, and A. Culotta. Curran Associates, Inc., 2009, pp. 2080–2088. 
isbn: 9781615679119. </p>
+</div><!-- contents -->
+</div><!-- doc-content -->
+<!-- start footer part -->
+<div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
+  <ul>
+    <li class="footer">Generated on Tue Sep 20 2016 11:27:01 for MADlib by
+    <a href="http://www.doxygen.org/index.html";>
+    <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.10 </li>
+  </ul>
+</div>
+</body>
+</html>

http://git-wip-us.apache.org/repos/asf/incubator-madlib-site/blob/bed9253d/docs/v1.9.1/group__grp__logreg.html
----------------------------------------------------------------------
diff --git a/docs/v1.9.1/group__grp__logreg.html 
b/docs/v1.9.1/group__grp__logreg.html
new file mode 100644
index 0000000..fe349dc
--- /dev/null
+++ b/docs/v1.9.1/group__grp__logreg.html
@@ -0,0 +1,419 @@
+<!-- HTML header for doxygen 1.8.4-->
+<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd";>
+<html xmlns="http://www.w3.org/1999/xhtml";>
+<head>
+<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
+<meta http-equiv="X-UA-Compatible" content="IE=9"/>
+<meta name="generator" content="Doxygen 1.8.10"/>
+<meta name="keywords" content="madlib,postgres,greenplum,machine learning,data 
mining,deep learning,ensemble methods,data science,market basket 
analysis,affinity analysis,pca,lda,regression,elastic net,huber 
white,proportional hazards,k-means,latent dirichlet allocation,bayes,support 
vector machines,svm"/>
+<title>MADlib: Logistic Regression</title>
+<link href="tabs.css" rel="stylesheet" type="text/css"/>
+<script type="text/javascript" src="jquery.js"></script>
+<script type="text/javascript" src="dynsections.js"></script>
+<link href="navtree.css" rel="stylesheet" type="text/css"/>
+<script type="text/javascript" src="resize.js"></script>
+<script type="text/javascript" src="navtreedata.js"></script>
+<script type="text/javascript" src="navtree.js"></script>
+<script type="text/javascript">
+  $(document).ready(initResizable);
+  $(window).load(resizeHeight);
+</script>
+<link href="search/search.css" rel="stylesheet" type="text/css"/>
+<script type="text/javascript" src="search/searchdata.js"></script>
+<script type="text/javascript" src="search/search.js"></script>
+<script type="text/javascript">
+  $(document).ready(function() { init_search(); });
+</script>
+<!-- hack in the navigation tree -->
+<script type="text/javascript" src="eigen_navtree_hacks.js"></script>
+<link href="doxygen.css" rel="stylesheet" type="text/css" />
+<link href="madlib_extra.css" rel="stylesheet" type="text/css"/>
+<!-- google analytics -->
+<script>
+  (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
+  (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new 
Date();a=s.createElement(o),
+  
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
+  })(window,document,'script','//www.google-analytics.com/analytics.js','ga');
+  ga('create', 'UA-45382226-1', 'madlib.net');
+  ga('send', 'pageview');
+</script>
+</head>
+<body>
+<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
+<div id="titlearea">
+<table cellspacing="0" cellpadding="0">
+ <tbody>
+ <tr style="height: 56px;">
+  <td id="projectlogo"><a href="http://madlib.net";><img alt="Logo" 
src="madlib.png" height="50" style="padding-left:0.5em;" border="0"/ ></a></td>
+  <td style="padding-left: 0.5em;">
+   <div id="projectname">
+   <span id="projectnumber">1.9.1</span>
+   </div>
+   <div id="projectbrief">User Documentation for MADlib</div>
+  </td>
+   <td>        <div id="MSearchBox" class="MSearchBoxInactive">
+        <span class="left">
+          <img id="MSearchSelect" src="search/mag_sel.png"
+               onmouseover="return searchBox.OnSearchSelectShow()"
+               onmouseout="return searchBox.OnSearchSelectHide()"
+               alt=""/>
+          <input type="text" id="MSearchField" value="Search" accesskey="S"
+               onfocus="searchBox.OnSearchFieldFocus(true)" 
+               onblur="searchBox.OnSearchFieldFocus(false)" 
+               onkeyup="searchBox.OnSearchFieldChange(event)"/>
+          </span><span class="right">
+            <a id="MSearchClose" 
href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" 
border="0" src="search/close.png" alt=""/></a>
+          </span>
+        </div>
+</td>
+ </tr>
+ </tbody>
+</table>
+</div>
+<!-- end header part -->
+<!-- Generated by Doxygen 1.8.10 -->
+<script type="text/javascript">
+var searchBox = new SearchBox("searchBox", "search",false,'Search');
+</script>
+</div><!-- top -->
+<div id="side-nav" class="ui-resizable side-nav-resizable">
+  <div id="nav-tree">
+    <div id="nav-tree-contents">
+      <div id="nav-sync" class="sync"></div>
+    </div>
+  </div>
+  <div id="splitbar" style="-moz-user-select:none;" 
+       class="ui-resizable-handle">
+  </div>
+</div>
+<script type="text/javascript">
+$(document).ready(function(){initNavTree('group__grp__logreg.html','');});
+</script>
+<div id="doc-content">
+<!-- window showing the filter options -->
+<div id="MSearchSelectWindow"
+     onmouseover="return searchBox.OnSearchSelectShow()"
+     onmouseout="return searchBox.OnSearchSelectHide()"
+     onkeydown="return searchBox.OnSearchSelectKey(event)">
+</div>
+
+<!-- iframe showing the search results (closed by default) -->
+<div id="MSearchResultsWindow">
+<iframe src="javascript:void(0)" frameborder="0" 
+        name="MSearchResults" id="MSearchResults">
+</iframe>
+</div>
+
+<div class="header">
+  <div class="headertitle">
+<div class="title">Logistic Regression<div class="ingroups"><a class="el" 
href="group__grp__super.html">Supervised Learning</a> &raquo; <a class="el" 
href="group__grp__regml.html">Regression Models</a></div></div>  </div>
+</div><!--header-->
+<div class="contents">
+<div class="toc"><b>Contents</b></p><ul>
+<li class="level1">
+<a href="#train">Training Function</a> </li>
+<li class="level1">
+<a href="#predict">Prediction Function</a> </li>
+<li class="level1">
+<a href="#examples">Examples</a> </li>
+<li class="level1">
+<a href="#background">Technical Background</a> </li>
+<li class="level1">
+<a href="#literature">Literature</a> </li>
+<li class="level1">
+<a href="#related">Related Topics</a> </li>
+</ul>
+</div><p>Binomial logistic regression models the relationship between a 
dichotomous dependent variable and one or more predictor variables. The 
dependent variable may be a Boolean value or a categorial variable that can be 
represented with a Boolean expression. The probabilities describing the 
possible outcomes of a single trial are modeled, as a function of the predictor 
variables, using a logistic function.</p>
+<p><a class="anchor" id="train"></a></p><dl class="section user"><dt>Training 
Function</dt><dd>The logistic regression training function has the following 
format: <pre class="syntax">
+logregr_train( source_table,
+               out_table,
+               dependent_varname,
+               independent_varname,
+               grouping_cols,
+               max_iter,
+               optimizer,
+               tolerance,
+               verbose
+             )
+</pre> <b>Arguments</b> <dl class="arglist">
+<dt>source_table </dt>
+<dd><p class="startdd">TEXT. The name of the table containing the training 
data.</p>
+<p class="enddd"></p>
+</dd>
+<dt>out_table </dt>
+<dd><p class="startdd">TEXT. Name of the generated table containing the output 
model.</p>
+<p>The output table produced by the logistic regression training function 
contains the following columns:</p>
+<table  class="output">
+<tr>
+<th>&lt;...&gt; </th><td><p class="starttd">Text. Grouping columns, if 
provided in input. This could be multiple columns depending on the 
<code>grouping_col</code> input. </p>
+<p class="endtd"></p>
+</td></tr>
+<tr>
+<th>coef </th><td><p class="starttd">FLOAT8. Vector of the coefficients of the 
regression. </p>
+<p class="endtd"></p>
+</td></tr>
+<tr>
+<th>log_likelihood </th><td><p class="starttd">FLOAT8. The log-likelihood <img 
class="formulaInl" alt="$ l(\boldsymbol c) $" src="form_79.png"/>. </p>
+<p class="endtd"></p>
+</td></tr>
+<tr>
+<th>std_err </th><td><p class="starttd">FLOAT8[]. Vector of the standard error 
of the coefficients. </p>
+<p class="endtd"></p>
+</td></tr>
+<tr>
+<th>z_stats </th><td><p class="starttd">FLOAT8[]. Vector of the z-statistics 
of the coefficients. </p>
+<p class="endtd"></p>
+</td></tr>
+<tr>
+<th>p_values </th><td><p class="starttd">FLOAT8[]. Vector of the p-values of 
the coefficients. </p>
+<p class="endtd"></p>
+</td></tr>
+<tr>
+<th>odds_ratios </th><td><p class="starttd">FLOAT8[]. The odds ratio, <img 
class="formulaInl" alt="$ \exp(c_i) $" src="form_115.png"/>. </p>
+<p class="endtd"></p>
+</td></tr>
+<tr>
+<th>condition_no </th><td><p class="starttd">FLOAT8[]. The condition number of 
the <img class="formulaInl" alt="$X^{*}X$" src="form_325.png"/> matrix. A high 
condition number is usually an indication that there may be some numeric 
instability in the result yielding a less reliable model. A high condition 
number often results when there is a significant amount of colinearity in the 
underlying design matrix, in which case other regression techniques may be more 
appropriate. </p>
+<p class="endtd"></p>
+</td></tr>
+<tr>
+<th>num_iterations </th><td>INTEGER. The number of iterations actually 
completed. This would be different from the <code>nIterations</code> argument 
if a <code>tolerance</code> parameter is provided and the algorithm converges 
before all iterations are completed.  </td></tr>
+<tr>
+<th>num_rows_processed </th><td>INTEGER. The number of rows actually 
processed, which is equal to the total number of rows in the source table minus 
the number of skipped rows.  </td></tr>
+<tr>
+<th>num_missing_rows_skipped </th><td>INTEGER. The number of rows skipped 
during the training. A row will be skipped if the independent_varname is NULL 
or contains NULL values.  </td></tr>
+</table>
+<p>A summary table named &lt;out_table&gt;_summary is also created at the same 
time, which has the following columns: </p><table  class="output">
+<tr>
+<th>source_table </th><td><p class="starttd">The data source table name. </p>
+<p class="endtd"></p>
+</td></tr>
+<tr>
+<th>out_table </th><td><p class="starttd">The output table name. </p>
+<p class="endtd"></p>
+</td></tr>
+<tr>
+<th>dependent_varname </th><td><p class="starttd">The dependent variable. </p>
+<p class="endtd"></p>
+</td></tr>
+<tr>
+<th>independent_varname </th><td><p class="starttd">The independent variables 
</p>
+<p class="endtd"></p>
+</td></tr>
+<tr>
+<th>optimizer_params </th><td><p class="starttd">A string that contains all 
the optimizer parameters, and has the form of 'optimizer=..., max_iter=..., 
tolerance=...' </p>
+<p class="endtd"></p>
+</td></tr>
+<tr>
+<th>num_all_groups </th><td><p class="starttd">How many groups of data were 
fit by the logistic model. </p>
+<p class="endtd"></p>
+</td></tr>
+<tr>
+<th>num_failed_groups </th><td><p class="starttd">How many groups' fitting 
processes failed. </p>
+<p class="endtd"></p>
+</td></tr>
+<tr>
+<th>num_rows_processed </th><td><p class="starttd">The total number of rows 
usd in the computation. </p>
+<p class="endtd"></p>
+</td></tr>
+<tr>
+<th>num_missing_rows_skipped </th><td>The total number of rows skipped.  
</td></tr>
+</table>
+<p class="enddd"></p>
+</dd>
+<dt>dependent_varname </dt>
+<dd><p class="startdd">TEXT. Name of the dependent variable column (of type 
BOOLEAN) in the training data or an expression evaluating to a BOOLEAN.</p>
+<p class="enddd"></p>
+</dd>
+<dt>independent_varname </dt>
+<dd><p class="startdd">TEXT. Expression list to evaluate for the independent 
variables. An intercept variable is not assumed. It is common to provide an 
explicit intercept term by including a single constant <code>1</code> term in 
the independent variable list.</p>
+<p class="enddd"></p>
+</dd>
+<dt>grouping_cols (optional) </dt>
+<dd><p class="startdd">TEXT, default: NULL. An expression list used to group 
the input dataset into discrete groups, running one regression per group. 
Similar to the SQL "GROUP BY" clause. When this value is NULL, no grouping is 
used and a single result model is generated.</p>
+<p class="enddd"></p>
+</dd>
+<dt>max_iter (optional) </dt>
+<dd><p class="startdd">INTEGER, default: 20. The maximum number of iterations 
that are allowed.</p>
+<p class="enddd"></p>
+</dd>
+<dt>optimizer (optional) </dt>
+<dd><p class="startdd">TEXT, default: 'irls'. The name of the optimizer to 
use: </p><table  class="output">
+<tr>
+<th>'newton' or 'irls' </th><td>Iteratively reweighted least squares  
</td></tr>
+<tr>
+<th>'cg' </th><td>conjugate gradient  </td></tr>
+<tr>
+<th>'igd' </th><td>incremental gradient descent.  </td></tr>
+</table>
+<p class="enddd"></p>
+</dd>
+<dt>tolerance (optional) </dt>
+<dd><p class="startdd">FLOAT8, default: 0.0001. The difference between 
log-likelihood values in successive iterations that should indicate 
convergence. A zero disables the convergence criterion, so that execution stops 
after <code>n</code> iterations have completed.</p>
+<p class="enddd"></p>
+</dd>
+<dt>verbose (optional) </dt>
+<dd>BOOLEAN, default: FALSE. Provides verbose output of the results of 
training. </dd>
+</dl>
+</dd></dl>
+<dl class="section note"><dt>Note</dt><dd>For p-values, we just return the 
computation result directly. Other statistical packages, like 'R', produce the 
same result, but on printing the result to screen, another format function is 
used and any p-value that is smaller than the machine epsilon (the smallest 
positive floating-point number 'x' such that '1 + x != 1') will be printed on 
screen as "&lt; xxx" (xxx is the value of the machine epsilon). Although the 
result may look different, they are in fact the same.</dd></dl>
+<p><a class="anchor" id="predict"></a></p><dl class="section 
user"><dt>Prediction Function</dt><dd>Two prediction functions are provided to 
either predict the boolean value of the dependent variable or the probability 
of the value of dependent variable being 'True', both functions using the same 
syntax.</dd></dl>
+<p>The function to predict the boolean value (True/False) of the dependent 
variable has the following syntax: </p><pre class="syntax">
+logregr_predict(coefficients,
+                ind_var
+               )
+</pre><p>The function to predict the probability of the dependent variable 
being True has the following syntax: </p><pre class="syntax">
+logregr_predict_prob(coefficients,
+                     ind_var
+                    )
+</pre><p><b>Arguments</b> </p><dl class="arglist">
+<dt>coefficients </dt>
+<dd><p class="startdd">DOUBLE PRECISION[]. Model coefficients obtained from <a 
class="el" 
href="logistic_8sql__in.html#a74210a7ef513dfcbdfdd9f3b37bfe428">logregr_train()</a>.</p>
+<p class="enddd"></p>
+</dd>
+<dt>ind_var </dt>
+<dd>Independent variables, as a DOUBLE array. This should be the same length 
as the array obtained by evaluation of the 'independent_varname' argument in <a 
class="el" 
href="logistic_8sql__in.html#a74210a7ef513dfcbdfdd9f3b37bfe428">logregr_train()</a>.
 </dd>
+</dl>
+<p><a class="anchor" id="examples"></a></p><dl class="section 
user"><dt>Examples</dt><dd><ol type="1">
+<li>Create the training data table. <pre class="example">
+CREATE TABLE patients( id INTEGER NOT NULL,
+                       second_attack INTEGER,
+                       treatment INTEGER,
+                       trait_anxiety INTEGER);
+COPY patients FROM STDIN WITH DELIMITER '|';
+  1 |             1 |         1 |            70
+  3 |             1 |         1 |            50
+  5 |             1 |         0 |            40
+  7 |             1 |         0 |            75
+  9 |             1 |         0 |            70
+ 11 |             0 |         1 |            65
+ 13 |             0 |         1 |            45
+ 15 |             0 |         1 |            40
+ 17 |             0 |         0 |            55
+ 19 |             0 |         0 |            50
+  2 |             1 |         1 |            80
+  4 |             1 |         0 |            60
+  6 |             1 |         0 |            65
+  8 |             1 |         0 |            80
+ 10 |             1 |         0 |            60
+ 12 |             0 |         1 |            50
+ 14 |             0 |         1 |            35
+ 16 |             0 |         1 |            50
+ 18 |             0 |         0 |            45
+ 20 |             0 |         0 |            60
+\.
+</pre></li>
+<li>Train a regression model. <pre class="example">
+SELECT madlib.logregr_train( 'patients',
+                             'patients_logregr',
+                             'second_attack',
+                             'ARRAY[1, treatment, trait_anxiety]',
+                             NULL,
+                             20,
+                             'irls'
+                           );
+</pre> (Note that in this example we are dynamically creating the array of 
independent variables from column names. If you have large numbers of 
independent variables beyond the PostgreSQL limit of maximum columns per table, 
you would pre-build the arrays and store them in a single column.)</li>
+<li>View the regression results. <pre class="example">
+-- Set extended display on for easier reading of output
+\x on
+SELECT * from patients_logregr;
+</pre> Result: <pre class="result">
+coef           | {5.59049410898112,2.11077546770772,-0.237276684606453}
+log_likelihood | -467.214718489873
+std_err        | {0.318943457652178,0.101518723785383,0.294509929481773}
+z_stats        | {17.5281667482197,20.7919819024719,-0.805666162169712}
+p_values       | {8.73403463417837e-69,5.11539430631541e-96,0.420435365338518}
+odds_ratios    | {267.867942976278,8.2546400100702,0.788773016471171}
+condition_no   | 179.186118573205
+num_iterations | 9
+</pre></li>
+<li>Alternatively, unnest the arrays in the results for easier reading of 
output: <pre class="example">
+\x off
+SELECT unnest(array['intercept', 'treatment', 'trait_anxiety']) as attribute,
+       unnest(coef) as coefficient,
+       unnest(std_err) as standard_error,
+       unnest(z_stats) as z_stat,
+       unnest(p_values) as pvalue,
+       unnest(odds_ratios) as odds_ratio
+    FROM patients_logregr;
+</pre></li>
+<li>Predicting dependent variable using the logistic regression model. (This 
example uses the original data table to perform the prediction. Typically a 
different test dataset with the same features as the original training dataset 
would be used for prediction.) <pre class="example">
+\x off
+-- Display prediction value along with the original value
+SELECT p.id, madlib.logregr_predict(coef, ARRAY[1, treatment, trait_anxiety]),
+       p.second_attack
+FROM patients p, patients_logregr m
+ORDER BY p.id;
+</pre></li>
+<li>Predicting the probability of the dependent variable being TRUE. <pre 
class="example">
+\x off
+-- Display prediction value along with the original value
+SELECT p.id, madlib.logregr_predict_prob(coef, ARRAY[1, treatment, 
trait_anxiety])
+FROM patients p, patients_logregr m
+ORDER BY p.id;
+</pre></li>
+</ol>
+</dd></dl>
+<p><a class="anchor" id="notes"></a></p><dl class="section 
user"><dt>Notes</dt><dd>All table names can be optionally schema qualified 
(current_schemas() would be searched if a schema name is not provided) and all 
table and column names should follow case-sensitivity and quoting rules per the 
database. (For instance, 'mytable' and 'MyTable' both resolve to the same 
entity, i.e. 'mytable'. If mixed-case or multi-byte characters are desired for 
entity names then the string should be double-quoted; in this case the input 
would be '"MyTable"').</dd></dl>
+<p><a class="anchor" id="background"></a></p><dl class="section 
user"><dt>Technical Background</dt><dd></dd></dl>
+<p>(Binomial) logistic regression refers to a stochastic model in which the 
conditional mean of the dependent dichotomous variable (usually denoted <img 
class="formulaInl" alt="$ Y \in \{ 0,1 \} $" src="form_354.png"/>) is the 
logistic function of an affine function of the vector of independent variables 
(usually denoted <img class="formulaInl" alt="$ \boldsymbol x $" 
src="form_58.png"/>). That is, </p><p class="formulaDsp">
+<img class="formulaDsp" alt="\[ E[Y \mid \boldsymbol x] = \sigma(\boldsymbol 
c^T \boldsymbol x) \]" src="form_94.png"/>
+</p>
+<p> for some unknown vector of coefficients <img class="formulaInl" alt="$ 
\boldsymbol c $" src="form_78.png"/> and where <img class="formulaInl" alt="$ 
\sigma(x) = \frac{1}{1 + \exp(-x)} $" src="form_95.png"/> is the logistic 
function. Logistic regression finds the vector of coefficients <img 
class="formulaInl" alt="$ \boldsymbol c $" src="form_78.png"/> that maximizes 
the likelihood of the observations.</p>
+<p>Let</p><ul>
+<li><img class="formulaInl" alt="$ \boldsymbol y \in \{ 0,1 \}^n $" 
src="form_355.png"/> denote the vector of observed dependent variables, with 
<img class="formulaInl" alt="$ n $" src="form_10.png"/> rows, containing the 
observed values of the dependent variable,</li>
+<li><img class="formulaInl" alt="$ X \in \mathbf R^{n \times k} $" 
src="form_98.png"/> denote the design matrix with <img class="formulaInl" 
alt="$ k $" src="form_97.png"/> columns and <img class="formulaInl" alt="$ n $" 
src="form_10.png"/> rows, containing all observed vectors of independent 
variables <img class="formulaInl" alt="$ \boldsymbol x_i $" src="form_99.png"/> 
as rows.</li>
+</ul>
+<p>By definition, </p><p class="formulaDsp">
+<img class="formulaDsp" alt="\[ P[Y = y_i | \boldsymbol x_i] = \sigma((-1)^{(1 
- y_i)} \cdot \boldsymbol c^T \boldsymbol x_i) \,. \]" src="form_356.png"/>
+</p>
+<p> Maximizing the likelihood <img class="formulaInl" alt="$ \prod_{i=1}^n 
\Pr(Y = y_i \mid \boldsymbol x_i) $" src="form_101.png"/> is equivalent to 
maximizing the log-likelihood <img class="formulaInl" alt="$ \sum_{i=1}^n \log 
\Pr(Y = y_i \mid \boldsymbol x_i) $" src="form_102.png"/>, which simplifies to 
</p><p class="formulaDsp">
+<img class="formulaDsp" alt="\[ l(\boldsymbol c) = -\sum_{i=1}^n \log(1 + 
\exp((-1)^{(1 - y_i)} \cdot \boldsymbol c^T \boldsymbol x_i)) \,. \]" 
src="form_357.png"/>
+</p>
+<p> The Hessian of this objective is <img class="formulaInl" alt="$ H = -X^T A 
X $" src="form_104.png"/> where <img class="formulaInl" alt="$ A = 
\text{diag}(a_1, \dots, a_n) $" src="form_105.png"/> is the diagonal matrix 
with <img class="formulaInl" alt="$ a_i = \sigma(\boldsymbol c^T \boldsymbol x) 
\cdot \sigma(-\boldsymbol c^T \boldsymbol x) \,. $" src="form_106.png"/> Since 
<img class="formulaInl" alt="$ H $" src="form_107.png"/> is non-positive 
definite, <img class="formulaInl" alt="$ l(\boldsymbol c) $" 
src="form_79.png"/> is convex. There are many techniques for solving convex 
optimization problems. Currently, logistic regression in MADlib can use one of 
three algorithms:</p><ul>
+<li>Iteratively Reweighted Least Squares</li>
+<li>A conjugate-gradient approach, also known as Fletcher-Reeves method in the 
literature, where we use the Hestenes-Stiefel rule for calculating the step 
size.</li>
+<li>Incremental gradient descent, also known as incremental gradient methods 
or stochastic gradient descent in the literature.</li>
+</ul>
+<p>We estimate the standard error for coefficient <img class="formulaInl" 
alt="$ i $" src="form_32.png"/> as </p><p class="formulaDsp">
+<img class="formulaDsp" alt="\[ \mathit{se}(c_i) = \left( (X^T A X)^{-1} 
\right)_{ii} \,. \]" src="form_108.png"/>
+</p>
+<p> The Wald z-statistic is </p><p class="formulaDsp">
+<img class="formulaDsp" alt="\[ z_i = \frac{c_i}{\mathit{se}(c_i)} \,. \]" 
src="form_109.png"/>
+</p>
+<p>The Wald <img class="formulaInl" alt="$ p $" src="form_110.png"/>-value for 
coefficient <img class="formulaInl" alt="$ i $" src="form_32.png"/> gives the 
probability (under the assumptions inherent in the Wald test) of seeing a value 
at least as extreme as the one observed, provided that the null hypothesis ( 
<img class="formulaInl" alt="$ c_i = 0 $" src="form_111.png"/>) is true. 
Letting <img class="formulaInl" alt="$ F $" src="form_112.png"/> denote the 
cumulative density function of a standard normal distribution, the Wald <img 
class="formulaInl" alt="$ p $" src="form_110.png"/>-value for coefficient <img 
class="formulaInl" alt="$ i $" src="form_32.png"/> is therefore </p><p 
class="formulaDsp">
+<img class="formulaDsp" alt="\[ p_i = \Pr(|Z| \geq |z_i|) = 2 \cdot (1 - F( 
|z_i| )) \]" src="form_113.png"/>
+</p>
+<p> where <img class="formulaInl" alt="$ Z $" src="form_114.png"/> is a 
standard normally distributed random variable.</p>
+<p>The odds ratio for coefficient <img class="formulaInl" alt="$ i $" 
src="form_32.png"/> is estimated as <img class="formulaInl" alt="$ \exp(c_i) $" 
src="form_115.png"/>.</p>
+<p>The condition number is computed as <img class="formulaInl" alt="$ 
\kappa(X^T A X) $" src="form_116.png"/> during the iteration immediately 
<em>preceding</em> convergence (i.e., <img class="formulaInl" alt="$ A $" 
src="form_13.png"/> is computed using the coefficients of the previous 
iteration). A large condition number (say, more than 1000) indicates the 
presence of significant multicollinearity.</p>
+<p><a class="anchor" id="literature"></a></p><dl class="section 
user"><dt>Literature</dt><dd></dd></dl>
+<p>A somewhat random selection of nice write-ups, with valuable pointers into 
further literature.</p>
+<p>[1] Cosma Shalizi: Statistics 36-350: Data Mining, Lecture Notes, 18 
November 2009, <a 
href="http://www.stat.cmu.edu/~cshalizi/350/lectures/26/lecture-26.pdf";>http://www.stat.cmu.edu/~cshalizi/350/lectures/26/lecture-26.pdf</a></p>
+<p>[2] Thomas P. Minka: A comparison of numerical optimizers for logistic 
regression, 2003 (revised Mar 26, 2007), <a 
href="http://research.microsoft.com/en-us/um/people/minka/papers/logreg/minka-logreg.pdf";>http://research.microsoft.com/en-us/um/people/minka/papers/logreg/minka-logreg.pdf</a></p>
+<p>[3] Paul Komarek, Andrew W. Moore: Making Logistic Regression A Core Data 
Mining Tool With TR-IRLS, IEEE International Conference on Data Mining 2005, 
pp. 685-688, <a 
href="http://komarix.org/ac/papers/tr-irls.short.pdf";>http://komarix.org/ac/papers/tr-irls.short.pdf</a></p>
+<p>[4] D. P. Bertsekas: Incremental gradient, subgradient, and proximal 
methods for convex optimization: a survey, Technical report, Laboratory for 
Information and Decision Systems, 2010, <a 
href="http://web.mit.edu/dimitrib/www/Incremental_Survey_LIDS.pdf";>http://web.mit.edu/dimitrib/www/Incremental_Survey_LIDS.pdf</a></p>
+<p>[5] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro: Robust stochastic 
approximation approach to stochastic programming, SIAM Journal on Optimization, 
19(4), 2009, <a 
href="http://www2.isye.gatech.edu/~nemirovs/SIOPT_RSA_2009.pdf";>http://www2.isye.gatech.edu/~nemirovs/SIOPT_RSA_2009.pdf</a></p>
+<p><a class="anchor" id="related"></a></p><dl class="section user"><dt>Related 
Topics</dt><dd></dd></dl>
+<p>File <a class="el" href="logistic_8sql__in.html" title="SQL functions for 
logistic regression. ">logistic.sql_in</a> documenting the training function</p>
+<p><a class="el" 
href="logistic_8sql__in.html#a74210a7ef513dfcbdfdd9f3b37bfe428" title="Compute 
logistic-regression coefficients and diagnostic statistics. 
">logregr_train()</a></p>
+<p><a class="el" 
href="elastic__net_8sql__in.html#a735038a5090c112505c740a90a203e83" 
title="Interface for elastic net. ">elastic_net_train()</a></p>
+<p><a class="el" href="group__grp__linreg.html">Linear Regression</a></p>
+<p><a class="el" href="group__grp__multinom.html">Multinomial 
Regression</a></p>
+<p><a class="el" href="group__grp__ordinal.html">Ordinal Regression</a></p>
+<p><a class="el" href="group__grp__robust.html">Robust Variance</a></p>
+<p><a class="el" href="group__grp__clustered__errors.html">Clustered 
Variance</a></p>
+<p><a class="el" href="group__grp__validation.html">Cross Validation</a></p>
+<p><a class="el" href="group__grp__marginal.html">Marginal Effects</a></p>
+</div><!-- contents -->
+</div><!-- doc-content -->
+<!-- start footer part -->
+<div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
+  <ul>
+    <li class="footer">Generated on Tue Sep 20 2016 11:27:01 for MADlib by
+    <a href="http://www.doxygen.org/index.html";>
+    <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.10 </li>
+  </ul>
+</div>
+</body>
+</html>

Reply via email to