vinx13 commented on a change in pull request #4667: [Tutorial] Deploy Quantized 
Model on CUDA
URL: https://github.com/apache/incubator-tvm/pull/4667#discussion_r365245824
 
 

 ##########
 File path: tutorials/frontend/deploy_quantized.py
 ##########
 @@ -0,0 +1,154 @@
+# Licensed to the Apache Software Foundation (ASF) under one
+# or more contributor license agreements.  See the NOTICE file
+# distributed with this work for additional information
+# regarding copyright ownership.  The ASF licenses this file
+# to you under the Apache License, Version 2.0 (the
+# "License"); you may not use this file except in compliance
+# with the License.  You may obtain a copy of the License at
+#
+#   http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing,
+# software distributed under the License is distributed on an
+# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+# KIND, either express or implied.  See the License for the
+# specific language governing permissions and limitations
+# under the License.
+"""
+Deploy a Quantized Model on Cuda
+================================
+**Author**: `Wuwei Lin <https://github.com/vinx13>`_
+
+This article is an introductory tutorial of automatic quantization with TVM.
+We will import a GluonCV pre-trained model on ImageNet to Relay, quantize the 
Relay model
+and then perform the inference.
+"""
+
+import tvm
+from tvm import relay
+from tvm.relay import quantize as qtz
+import mxnet as mx
+from tvm.contrib.download import download_testdata
+from mxnet import gluon
+import logging
+import os
+
+batch_size = 1
+model_name = "resnet18_v1"
+target = 'cuda'
+ctx = tvm.context(target)
+
+###############################################################################
+# Prepare the Dataset
+# -------------------
+# We will demonstrate how to prepare the calibration dataset for quantization.
+# We first download the validate set of ImageNet and pre-process the dataset.
+calibration_rec = download_testdata(
+    
'http://data.mxnet.io.s3-website-us-west-1.amazonaws.com/data/val_256_q90.rec',
+    'val_256_q90.rec')
+
+def get_val_data(num_workers=4):
+    mean_rgb = [123.68, 116.779, 103.939]
+    std_rgb = [58.393, 57.12, 57.375]
+
+    def batch_fn(batch):
+        return batch.data[0].asnumpy(), batch.label[0].asnumpy()
+
+    img_size = 299 if model_name == 'inceptionv3' else 224
+    val_data = mx.io.ImageRecordIter(
+        path_imgrec=calibration_rec,
+        preprocess_threads=num_workers,
+        shuffle=False,
+        batch_size=batch_size,
+        resize=256,
+        data_shape=(3, img_size, img_size),
+        mean_r=mean_rgb[0],
+        mean_g=mean_rgb[1],
+        mean_b=mean_rgb[2],
+        std_r=std_rgb[0],
+        std_g=std_rgb[1],
+        std_b=std_rgb[2],
+    )
+    return val_data, batch_fn
+
+
+###############################################################################
+# The calibration dataset should be a iterable object. We define the
+# calibration dataset as a generator object in Python. In this tutorials, we
+# only use a few samples for calibration.
+
+calibration_samples = 10
+
+def calibrate_dataset():
+    val_data, batch_fn = get_val_data()
+    val_data.reset()
+    for i, batch in enumerate(val_data):
+        if i * batch_size >= calibration_samples:
+            break
+        data, _ = batch_fn(batch)
+        yield {'data': data}
+
+
+###############################################################################
+# Import the model
+# ----------------
+# We use the Relay MxNet frontent to import a model from the Gluon model zoo.
+def get_model():
+    gluon_model = gluon.model_zoo.vision.get_model(model_name, pretrained=True)
+    img_size = 299 if model_name == 'inceptionv3' else 224
+    data_shape = (batch_size, 3, img_size, img_size)
+    mod, params = relay.frontend.from_mxnet(gluon_model, {"data": data_shape})
+    return mod, params
+
+
+###############################################################################
+# Quantize the Model
+# ------------------
+# In quantization, we need to find the scale for each weight and output tensor.
+# For weights, the scales are directly calculated based on the value of the 
+# weights. Two modes are supported: `power2` and `max`. Both modes find the
+# maximum value within the weight tensor first. In `power2` mode, the maximum
+# is rounded down to power of two. If the scales of both weights and outputs
+# are power of two, we can leverage bit shifting for multiplications. This make
+# it computationally more efficient. In `max` mode, the maximum is used as the
+# scale. Without rounding, `max` mode might have better accuracy in some cases.
+# When the scales are not power of two, fixed point multiplications will
+# be used.
+#
+# For outputs, we can find the scales with data-aware quantization.
+# Data-aware quantization takes a calibration dataset as the input argument.
+# Scales are calculated by minimizing the KL divergence of between the data
 
 Review comment:
   it is not necessarily 'activation', so i updated to 'output of each layer'

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


With regards,
Apache Git Services

Reply via email to