

[jira] [Commented] (PDFBOX-2145) Clean up PDFStreamEngine and PDFTextStripper

2014-06-18

Thread
Tilman Hausherr (JIRA)

[
https://issues.apache.org/jira/browse/PDFBOX-2145?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanelfocusedCommentId=14034926#comment-14034926
]

Tilman Hausherr commented on PDFBOX-2145:
-

No...

Could you please check whether you committed all your local changes in fontbox?

 Clean up PDFStreamEngine and PDFTextStripper

 Key: PDFBOX-2145
 URL: https://issues.apache.org/jira/browse/PDFBOX-2145
 Project: PDFBox
 Issue Type: Improvement
 Components: Text extraction
Affects Versions: 2.0.0
Reporter: John Hewson
Assignee: John Hewson
Priority: Minor

 PDFStreamEngine and PDFTextStripper don't really meet our coding conventions
 and have several unused methods and deprecated code which can safely be
 removed.
 This should clear the way to fixing some bugs in PDFStreamEngine,
 PDFTextStripper and the various PDFont classes related to text encoding.

--
This message was sent by Atlassian JIRA
(v6.2#6252)

Re: Build Failures

2014-06-18

Thread
Andreas Lehmkühler

Hi,

 John Hewson j...@jahewson.com hat am 18. Juni 2014 um 06:15 geschrieben:

 I’m getting intermittent build failures on Jenkins:

 Waiting for Jenkins to finish collecting data[ERROR] Failed to execute goal
 org.apache.maven.plugins:maven-deploy-plugin:2.8.1:deploy (default-deploy) on
 project pdfbox-parent: Failed to retrieve remote metadata
 org.apache.pdfbox:pdfbox-parent:2.0.0-SNAPSHOT/maven-metadata.xml: Could not
 transfer metadata
 org.apache.pdfbox:pdfbox-parent:2.0.0-SNAPSHOT/maven-metadata.xml from/to
 apache.snapshots.https
 (https://repository.apache.org/content/repositories/snapshots): Failed to
 transfer file:
 https://repository.apache.org/content/repositories/snapshots/org/apache/pdfbox/pdfbox-parent/2.0.0-SNAPSHOT/maven-metadata.xml.
 Return code is: 503 , ReasonPhrase:Service Temporarily Unavailable. - [Help
 1]
 [ERROR]
 [ERROR] To see the full stack trace of the errors, re-run Maven with the -e
 switch.
 [ERROR] Re-run Maven using the -X switch to enable full debug logging.
 [ERROR]
 [ERROR] For more information about the errors and possible solutions, please
 read the following articles:
 [ERROR] [Help 1]
 http://cwiki.apache.org/confluence/display/MAVEN/MojoExecutionException

 Looks like the apache SVN repo is having some problems.
Nope, it's the nexus repos but in the the end with the same effect, the build
failed. ;-)

I've manually triggered a new build. Let's see if it works ...

 -- John

BR
Andreas Lehmkühler

Re: PDFBox 1.8.6 release

2014-06-18

Thread
Andreas Lehmkühler

Hi,

 Andreas Lehmkuehler andr...@lehmi.de hat am 11. Juni 2014 um 08:04
 geschrieben:

 Am 28.05.2014 15:10, schrieb Andreas Lehmkühler:
 Hi,

 there are already a number of solved issues mostly due
 to the hard work of Tilman and I'm thinking about a new
 bugfix release. How about a new one in 2 or 3 weeks
 from now?

 WDYT?
 How about next week, let say wednesday the 18th?
Just as a friendly reminder. I'm going to cut the release either
this evening (approx. in 7 hours from now) or tomorrow
depending on my free cycles

BR
Andreas Lehmkühler

Jenkins build is back to normal : PDFBox-trunk » PDFBox parent #1048

2014-06-18

Thread
Apache Jenkins Server

See
https://builds.apache.org/job/PDFBox-trunk/org.apache.pdfbox$pdfbox-parent/1048/

Jenkins build is unstable: PDFBox-trunk » Apache PDFBox tools #1048

2014-06-18

Thread
Apache Jenkins Server

See
https://builds.apache.org/job/PDFBox-trunk/org.apache.pdfbox$pdfbox-tools/1048/

Jenkins build is unstable: PDFBox-trunk » Apache PDFBox #1048

2014-06-18

Thread
Apache Jenkins Server

See https://builds.apache.org/job/PDFBox-trunk/org.apache.pdfbox$pdfbox/1048/

Jenkins build is unstable: PDFBox-trunk #1048

2014-06-18

Thread
Apache Jenkins Server

See https://builds.apache.org/job/PDFBox-trunk/1048/

[jira] [Commented] (PDFBOX-2145) Clean up PDFStreamEngine and PDFTextStripper

2014-06-18

Thread
JIRA

[
https://issues.apache.org/jira/browse/PDFBOX-2145?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanelfocusedCommentId=14035553#comment-14035553
]

Andreas Lehmkühler commented on PDFBOX-2145:

The HashMap AFM_MAP in PDType1Font isn't initialized before adding some values

 Clean up PDFStreamEngine and PDFTextStripper

 Key: PDFBOX-2145
 URL: https://issues.apache.org/jira/browse/PDFBOX-2145
 Project: PDFBox
 Issue Type: Improvement
 Components: Text extraction
Affects Versions: 2.0.0
Reporter: John Hewson
Assignee: John Hewson
Priority: Minor

 PDFStreamEngine and PDFTextStripper don't really meet our coding conventions
 and have several unused methods and deprecated code which can safely be
 removed.
 This should clear the way to fixing some bugs in PDFStreamEngine,
 PDFTextStripper and the various PDFont classes related to text encoding.

--
This message was sent by Atlassian JIRA
(v6.2#6252)

Re: PDFBox 1.8.6 release

2014-06-18

Thread
Tilman Hausherr

If possible, please tell again maybe 30min in advance, I'm starting to
remove unused imports.

Tilman

Am 18.06.2014 11:54, schrieb Andreas Lehmkühler:

Hi,

Andreas Lehmkuehler andr...@lehmi.de hat am 11. Juni 2014 um 08:04
geschrieben:

Am 28.05.2014 15:10, schrieb Andreas Lehmkühler:

Hi,

there are already a number of solved issues mostly due
to the hard work of Tilman and I'm thinking about a new
bugfix release. How about a new one in 2 or 3 weeks
from now?

WDYT?

How about next week, let say wednesday the 18th?

Just as a friendly reminder. I'm going to cut the release either
this evening (approx. in 7 hours from now) or tomorrow
depending on my free cycles

BR
Andreas Lehmkühler

[jira] [Created] (PDFBOX-2146) remove unused imports

2014-06-18

Thread
Tilman Hausherr (JIRA)

Tilman Hausherr created PDFBOX-2146:

 Summary: remove unused imports
 Key: PDFBOX-2146
 URL: https://issues.apache.org/jira/browse/PDFBOX-2146
 Project: PDFBox
 Issue Type: Improvement
Affects Versions: 2.0.0
Reporter: Tilman Hausherr
Priority: Trivial
 Fix For: 2.0.0

--
This message was sent by Atlassian JIRA
(v6.2#6252)

Re: PDFBox 1.8.6 release

2014-06-18

Thread
Tilman Hausherr

Oops, ignore this, I'll work on 2.0 only.
Tilman

Am 18.06.2014 16:31, schrieb Tilman Hausherr:
If possible, please tell again maybe 30min in advance, I'm starting to
remove unused imports.
Tilman

[jira] [Assigned] (PDFBOX-2146) remove unused imports

2014-06-18

Thread
Tilman Hausherr (JIRA)

 [
https://issues.apache.org/jira/browse/PDFBOX-2146?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]

Tilman Hausherr reassigned PDFBOX-2146:

Assignee: Tilman Hausherr

 remove unused imports
 -

 Key: PDFBOX-2146
 URL: https://issues.apache.org/jira/browse/PDFBOX-2146
 Project: PDFBox
 Issue Type: Improvement
Affects Versions: 2.0.0
Reporter: Tilman Hausherr
Assignee: Tilman Hausherr
Priority: Trivial
 Fix For: 2.0.0

--
This message was sent by Atlassian JIRA
(v6.2#6252)

[jira] [Commented] (PDFBOX-2146) remove unused imports

2014-06-18

Thread
Tilman Hausherr (JIRA)

[
https://issues.apache.org/jira/browse/PDFBOX-2146?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanelfocusedCommentId=14035790#comment-14035790
]

Tilman Hausherr commented on PDFBOX-2146:
-

Done in rev 1603463, 1603465, 1603466, 1603469, 1603470, 1603472 for the trunk

 remove unused imports
 -

 Key: PDFBOX-2146
 URL: https://issues.apache.org/jira/browse/PDFBOX-2146
 Project: PDFBox
 Issue Type: Improvement
Affects Versions: 2.0.0
Reporter: Tilman Hausherr
Priority: Trivial
 Fix For: 2.0.0

--
This message was sent by Atlassian JIRA
(v6.2#6252)

Jenkins build is still unstable: PDFBox-trunk » Apache PDFBox tools #1049

2014-06-18

Thread
Apache Jenkins Server

See
https://builds.apache.org/job/PDFBox-trunk/org.apache.pdfbox$pdfbox-tools/1049/

Jenkins build is back to stable : PDFBox-trunk » Apache PDFBox #1049

2014-06-18

Thread
Apache Jenkins Server

See
https://builds.apache.org/job/PDFBox-trunk/org.apache.pdfbox$pdfbox/1049/changes

Jenkins build is still unstable: PDFBox-trunk #1049

2014-06-18

Thread
Apache Jenkins Server

See https://builds.apache.org/job/PDFBox-trunk/changes

[jira] [Updated] (PDFBOX-2146) remove unused imports / fix imports

2014-06-18

Thread
Tilman Hausherr (JIRA)

 [
https://issues.apache.org/jira/browse/PDFBOX-2146?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]

Tilman Hausherr updated PDFBOX-2146:

Summary: remove unused imports / fix imports (was: remove unused imports)

 remove unused imports / fix imports

 Key: PDFBOX-2146
 URL: https://issues.apache.org/jira/browse/PDFBOX-2146
 Project: PDFBox
 Issue Type: Improvement
Affects Versions: 2.0.0
Reporter: Tilman Hausherr
Assignee: Tilman Hausherr
Priority: Trivial
 Fix For: 2.0.0

--
This message was sent by Atlassian JIRA
(v6.2#6252)

[jira] [Comment Edited] (PDFBOX-2146) remove unused imports / fix imports

2014-06-18

Thread
Tilman Hausherr (JIRA)

[
https://issues.apache.org/jira/browse/PDFBOX-2146?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanelfocusedCommentId=14035790#comment-14035790
]

Tilman Hausherr edited comment on PDFBOX-2146 at 6/18/14 3:13 PM:
--

Removed unused imports in rev 1603463, 1603465, 1603466, 1603469, 1603470,
1603472 for the trunk

Fixed forbidden .* imports in rev 1603475 in the trunk

was (Author: tilman):
Done in rev 1603463, 1603465, 1603466, 1603469, 1603470, 1603472 for the trunk

 remove unused imports / fix imports

 Key: PDFBOX-2146
 URL: https://issues.apache.org/jira/browse/PDFBOX-2146
 Project: PDFBox
 Issue Type: Improvement
Affects Versions: 2.0.0
Reporter: Tilman Hausherr
Assignee: Tilman Hausherr
Priority: Trivial
 Fix For: 2.0.0

--
This message was sent by Atlassian JIRA
(v6.2#6252)

[jira] [Comment Edited] (PDFBOX-2146) remove unused imports / fix imports

2014-06-18

Thread
Tilman Hausherr (JIRA)

[
https://issues.apache.org/jira/browse/PDFBOX-2146?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanelfocusedCommentId=14035790#comment-14035790
]

Tilman Hausherr edited comment on PDFBOX-2146 at 6/18/14 3:41 PM:
--

Removed unused imports in rev 1603463, 1603465, 1603466, 1603469, 1603470,
1603472, 1603488 for the trunk

Fixed forbidden .* imports in rev 1603475, 1603477, 1603479, 1603480, 1603483
in the trunk

was (Author: tilman):
Removed unused imports in rev 1603463, 1603465, 1603466, 1603469, 1603470,
1603472 for the trunk

Fixed forbidden .* imports in rev 1603475 in the trunk

 remove unused imports / fix imports

 Key: PDFBOX-2146
 URL: https://issues.apache.org/jira/browse/PDFBOX-2146
 Project: PDFBox
 Issue Type: Improvement
Affects Versions: 2.0.0
Reporter: Tilman Hausherr
Assignee: Tilman Hausherr
Priority: Trivial
 Fix For: 2.0.0

--
This message was sent by Atlassian JIRA
(v6.2#6252)

[jira] [Commented] (PDFBOX-2145) Clean up PDFStreamEngine and PDFTextStripper

2014-06-18

Thread
JIRA

[
https://issues.apache.org/jira/browse/PDFBOX-2145?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanelfocusedCommentId=14035844#comment-14035844
]

Andreas Lehmkühler commented on PDFBOX-2145:

I've fixed the NPE issue in revision http://svn.apache.org/r1603490

 Clean up PDFStreamEngine and PDFTextStripper

 Key: PDFBOX-2145
 URL: https://issues.apache.org/jira/browse/PDFBOX-2145
 Project: PDFBox
 Issue Type: Improvement
 Components: Text extraction
Affects Versions: 2.0.0
Reporter: John Hewson
Assignee: John Hewson
Priority: Minor

 PDFStreamEngine and PDFTextStripper don't really meet our coding conventions
 and have several unused methods and deprecated code which can safely be
 removed.
 This should clear the way to fixing some bugs in PDFStreamEngine,
 PDFTextStripper and the various PDFont classes related to text encoding.

--
This message was sent by Atlassian JIRA
(v6.2#6252)

[jira] [Resolved] (PDFBOX-2146) remove unused imports / fix imports

2014-06-18

Thread
Tilman Hausherr (JIRA)

 [
https://issues.apache.org/jira/browse/PDFBOX-2146?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]

Tilman Hausherr resolved PDFBOX-2146.
-

Resolution: Fixed

 remove unused imports / fix imports

 Key: PDFBOX-2146
 URL: https://issues.apache.org/jira/browse/PDFBOX-2146
 Project: PDFBox
 Issue Type: Improvement
Affects Versions: 2.0.0
Reporter: Tilman Hausherr
Assignee: Tilman Hausherr
Priority: Trivial
 Fix For: 2.0.0

--
This message was sent by Atlassian JIRA
(v6.2#6252)

Jenkins build is back to stable : PDFBox-trunk » Apache PDFBox tools #1050

2014-06-18

Thread
Apache Jenkins Server

See
https://builds.apache.org/job/PDFBox-trunk/org.apache.pdfbox$pdfbox-tools/1050/changes

Jenkins build is back to stable : PDFBox-trunk #1050

2014-06-18

Thread
Apache Jenkins Server

See https://builds.apache.org/job/PDFBox-trunk/1050/changes

[jira] [Commented] (PDFBOX-2145) Clean up PDFStreamEngine and PDFTextStripper

2014-06-18

Thread
Tilman Hausherr (JIRA)

[
https://issues.apache.org/jira/browse/PDFBOX-2145?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanelfocusedCommentId=14035909#comment-14035909
]

Tilman Hausherr commented on PDFBOX-2145:
-

[~pslabycz] The unused imports has been done in PDFBOX-2146.

 Clean up PDFStreamEngine and PDFTextStripper

 Key: PDFBOX-2145
 URL: https://issues.apache.org/jira/browse/PDFBOX-2145
 Project: PDFBox
 Issue Type: Improvement
 Components: Text extraction
Affects Versions: 2.0.0
Reporter: John Hewson
Assignee: John Hewson
Priority: Minor

 PDFStreamEngine and PDFTextStripper don't really meet our coding conventions
 and have several unused methods and deprecated code which can safely be
 removed.
 This should clear the way to fixing some bugs in PDFStreamEngine,
 PDFTextStripper and the various PDFont classes related to text encoding.

--
This message was sent by Atlassian JIRA
(v6.2#6252)

[jira] [Created] (PDFBOX-2147) Clean up code with inspect and transform

2014-06-18

Thread
Tilman Hausherr (JIRA)

Tilman Hausherr created PDFBOX-2147:

 Summary: Clean up code with inspect and transform
 Key: PDFBOX-2147
 URL: https://issues.apache.org/jira/browse/PDFBOX-2147
 Project: PDFBox
 Issue Type: Bug
Affects Versions: 2.0.0
Reporter: Tilman Hausherr
Assignee: Tilman Hausherr
Priority: Minor
 Fix For: 2.0.0

I'm doing some code clean up with Netbeans Inspect and Transform feature.
(Which I already used for PDFBOX-2146)

--
This message was sent by Atlassian JIRA
(v6.2#6252)

[jira] [Commented] (PDFBOX-2147) Clean up code with inspect and transform

2014-06-18

Thread
Tilman Hausherr (JIRA)

[
https://issues.apache.org/jira/browse/PDFBOX-2147?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanelfocusedCommentId=14035962#comment-14035962
]

Tilman Hausherr commented on PDFBOX-2147:
-

Fix .equals(null) in rev 1603517.

Replaced isEmpty() with of .equals() in rev 1603524.

Replaced isEmpty() with .size() == 0 in rev 1603528.

Replaced 1 sized string with character for indexof() in rev 1603531 and 1603533.

 Clean up code with inspect and transform
 --

 Key: PDFBOX-2147
 URL: https://issues.apache.org/jira/browse/PDFBOX-2147
 Project: PDFBox
 Issue Type: Bug
Affects Versions: 2.0.0
Reporter: Tilman Hausherr
Assignee: Tilman Hausherr
Priority: Minor
 Fix For: 2.0.0

 I'm doing some code clean up with Netbeans Inspect and Transform feature.
 (Which I already used for PDFBOX-2146)

--
This message was sent by Atlassian JIRA
(v6.2#6252)

[jira] [Commented] (PDFBOX-2145) Clean up PDFStreamEngine and PDFTextStripper

2014-06-18

Thread
John Hewson (JIRA)

[
https://issues.apache.org/jira/browse/PDFBOX-2145?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanelfocusedCommentId=14035997#comment-14035997
]

John Hewson commented on PDFBOX-2145:
-

Yeah, I forgot to commit my modified PDType1Font.

 Clean up PDFStreamEngine and PDFTextStripper

 Key: PDFBOX-2145
 URL: https://issues.apache.org/jira/browse/PDFBOX-2145
 Project: PDFBox
 Issue Type: Improvement
 Components: Text extraction
Affects Versions: 2.0.0
Reporter: John Hewson
Assignee: John Hewson
Priority: Minor

 PDFStreamEngine and PDFTextStripper don't really meet our coding conventions
 and have several unused methods and deprecated code which can safely be
 removed.
 This should clear the way to fixing some bugs in PDFStreamEngine,
 PDFTextStripper and the various PDFont classes related to text encoding.

--
This message was sent by Atlassian JIRA
(v6.2#6252)

[jira] [Comment Edited] (PDFBOX-2147) Clean up code with inspect and transform

2014-06-18

Thread
Tilman Hausherr (JIRA)

[
https://issues.apache.org/jira/browse/PDFBOX-2147?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanelfocusedCommentId=14035962#comment-14035962
]

Tilman Hausherr edited comment on PDFBOX-2147 at 6/18/14 5:48 PM:
--

Fix .equals(null) in rev 1603517.

Replaced isEmpty() with of .equals() in rev 1603524.

Replaced isEmpty() with .size() == 0 in rev 1603528.

Replaced 1 sized string with character for indexof() in rev 1603531 and 1603533.

Replace redundant if statements in rev 1603539 and 1603539.

Replace loops with foreach loop in rev 1603546.

was (Author: tilman):
Fix .equals(null) in rev 1603517.

Replaced isEmpty() with of .equals() in rev 1603524.

Replaced isEmpty() with .size() == 0 in rev 1603528.

Replaced 1 sized string with character for indexof() in rev 1603531 and 1603533.

 Clean up code with inspect and transform
 --

 Key: PDFBOX-2147
 URL: https://issues.apache.org/jira/browse/PDFBOX-2147
 Project: PDFBox
 Issue Type: Bug
Affects Versions: 2.0.0
Reporter: Tilman Hausherr
Assignee: Tilman Hausherr
Priority: Minor
 Fix For: 2.0.0

 I'm doing some code clean up with Netbeans Inspect and Transform feature.
 (Which I already used for PDFBOX-2146)

--
This message was sent by Atlassian JIRA
(v6.2#6252)

[jira] [Comment Edited] (PDFBOX-2147) Clean up code with inspect and transform

2014-06-18

Thread
Tilman Hausherr (JIRA)

[
https://issues.apache.org/jira/browse/PDFBOX-2147?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanelfocusedCommentId=14035962#comment-14035962
]

Tilman Hausherr edited comment on PDFBOX-2147 at 6/18/14 5:51 PM:
--

Fix .equals(null) in rev 1603517.

Replaced isEmpty() with of .equals() in rev 1603524.

Replaced isEmpty() with .size() == 0 in rev 1603528.

Replaced 1 sized string with character for indexof() in rev 1603531 and 1603533.

Replace redundant if statements in rev 1603539 and 1603541.

Replace loops with foreach loop in rev 1603546 and 1603551.

was (Author: tilman):
Fix .equals(null) in rev 1603517.

Replaced isEmpty() with of .equals() in rev 1603524.

Replaced isEmpty() with .size() == 0 in rev 1603528.

Replaced 1 sized string with character for indexof() in rev 1603531 and 1603533.

Replace redundant if statements in rev 1603539 and 1603539.

Replace loops with foreach loop in rev 1603546.

 Clean up code with inspect and transform
 --

 Key: PDFBOX-2147
 URL: https://issues.apache.org/jira/browse/PDFBOX-2147
 Project: PDFBox
 Issue Type: Bug
Affects Versions: 2.0.0
Reporter: Tilman Hausherr
Assignee: Tilman Hausherr
Priority: Minor
 Fix For: 2.0.0

 I'm doing some code clean up with Netbeans Inspect and Transform feature.
 (Which I already used for PDFBOX-2146)

--
This message was sent by Atlassian JIRA
(v6.2#6252)

[jira] [Comment Edited] (PDFBOX-2147) Clean up code with inspect and transform

2014-06-18

Thread
Tilman Hausherr (JIRA)

[
https://issues.apache.org/jira/browse/PDFBOX-2147?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanelfocusedCommentId=14035962#comment-14035962
]

Tilman Hausherr edited comment on PDFBOX-2147 at 6/18/14 6:07 PM:
--

Fix .equals(null) in rev 1603517.

Replaced isEmpty() with of .equals() in rev 1603524.

Replaced isEmpty() with .size() == 0 in rev 1603528.

Replaced 1 sized string with character for indexof() in rev 1603531 and 1603533.

Replace redundant if statements in rev 1603539 and 1603541.

Replace loops with foreach loop in rev 1603546, 1603551, 1603552, 1603554.

was (Author: tilman):
Fix .equals(null) in rev 1603517.

Replaced isEmpty() with of .equals() in rev 1603524.

Replaced isEmpty() with .size() == 0 in rev 1603528.

Replaced 1 sized string with character for indexof() in rev 1603531 and 1603533.

Replace redundant if statements in rev 1603539 and 1603541.

Replace loops with foreach loop in rev 1603546 and 1603551.

 Clean up code with inspect and transform
 --

 Key: PDFBOX-2147
 URL: https://issues.apache.org/jira/browse/PDFBOX-2147
 Project: PDFBox
 Issue Type: Bug
Affects Versions: 2.0.0
Reporter: Tilman Hausherr
Assignee: Tilman Hausherr
Priority: Minor
 Fix For: 2.0.0

 I'm doing some code clean up with Netbeans Inspect and Transform feature.
 (Which I already used for PDFBOX-2146)

--
This message was sent by Atlassian JIRA
(v6.2#6252)

[jira] [Resolved] (PDFBOX-2147) Clean up code with inspect and transform

2014-06-18

Thread
Tilman Hausherr (JIRA)

 [
https://issues.apache.org/jira/browse/PDFBOX-2147?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]

Tilman Hausherr resolved PDFBOX-2147.
-

Resolution: Fixed

 Clean up code with inspect and transform
 --

 Key: PDFBOX-2147
 URL: https://issues.apache.org/jira/browse/PDFBOX-2147
 Project: PDFBox
 Issue Type: Bug
Affects Versions: 2.0.0
Reporter: Tilman Hausherr
Assignee: Tilman Hausherr
Priority: Minor
 Fix For: 2.0.0

 I'm doing some code clean up with Netbeans Inspect and Transform feature.
 (Which I already used for PDFBOX-2146)

--
This message was sent by Atlassian JIRA
(v6.2#6252)

[jira] [Resolved] (PDFBOX-2082) signing corrupts PDF when signature exactly fits allocated space

2014-06-18

Thread
JIRA

 [
https://issues.apache.org/jira/browse/PDFBOX-2082?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]

Andreas Lehmkühler resolved PDFBOX-2082.

Resolution: Fixed

I've added the patch in revisions http://svn.apache.org/r1603566 (trunk) and
http://svn.apache.org/r1603567 (1.8 branch) with some slight additions.

Thanks for the detailed explanation and the contribution itself!

 signing corrupts PDF when signature exactly fits allocated space

 Key: PDFBOX-2082
 URL: https://issues.apache.org/jira/browse/PDFBOX-2082
 Project: PDFBox
 Issue Type: Bug
 Components: Writing
Affects Versions: 1.8.5, 2.0.0
Reporter: Štěpán Schejbal
Assignee: Andreas Lehmkühler
Priority: Critical
 Fix For: 1.8.6, 2.0.0

 The current check does not take into account, so if you are (un)lucky,
 the signature overwrites and corrupts the PDF.
 Fix for 1.8:
 {code}
 diff --git a/pdfbox/src/main/java/org/apache/pdfbox/pdfwriter/COSWriter.java
 b/pdfbox/src/main/java/org/apache/pdfbox/pdfwriter/COSWriter.java
 index 3165589..80fbad2 100644
 --- a/pdfbox/src/main/java/org/apache/pdfbox/pdfwriter/COSWriter.java
 +++ b/pdfbox/src/main/java/org/apache/pdfbox/pdfwriter/COSWriter.java
 @@ -778,13 +778,15 @@ public class COSWriter implements ICOSVisitor, Closeable

 SignatureInterface signatureInterface =
 doc.getSignatureInterface();
 byte[] sign = signatureInterface.sign(new
 ByteArrayInputStream(pdfContent));
 +// this assumes that the dummy signature has been writen as
 ...
 String signature = new COSString(sign).getHexString();
 -int leftSignaturerange =
 signaturePosition[1]-signaturePosition[0]-signature.length();
 -if(leftSignaturerange0)
 +int startPos = signaturePosition[0] + 1; // move past
 +int endPos = signaturePosition[1] - 1; // move in front of
 +if (startPos + signature.length() endPos)
 {
 throw new IOException(Can't write signature, not enough
 space);
 }
 -getStandardOutput().setPos(signaturePosition[0]+1);
 +getStandardOutput().setPos(startPos);
 getStandardOutput().write(signature.getBytes());
 }
 }
 {code}
 Another thing is that pdfbox now allocates (2 * preferedSize + 2) for a
 signature. It quite confused me to see 16k+4 bytes allocated when I called
 setPreferedSignatureSize(4k) - it should have allocated 8k (each signature
 byte takes 2 bytes in the pdf).
 Fix for 1.8:
 {code}
 diff --git a/pdfbox/src/main/java/org/apache/pdfbox/pdmodel/PDDocument.java
 b/pdfbox/src/main/java/org/apache/pdfbox/pdmodel/PDDocument.java
 index 358364a..23dd3ab 100644
 --- a/pdfbox/src/main/java/org/apache/pdfbox/pdmodel/PDDocument.java
 +++ b/pdfbox/src/main/java/org/apache/pdfbox/pdmodel/PDDocument.java
 @@ -309,7 +309,7 @@ public class PDDocument implements Pageable, Closeable
 int preferedSignatureSize = options.getPreferedSignatureSize();
 if (preferedSignatureSize 0)
 {
 -sigObject.setContents(new byte[preferedSignatureSize * 2 + 2]);
 +sigObject.setContents(new byte[preferedSignatureSize]);
 }
 else
 {
 {code}

--
This message was sent by Atlassian JIRA
(v6.2#6252)

Build failed in Jenkins: PDFBox-trunk #1053

2014-06-18

Thread
Apache Jenkins Server

See https://builds.apache.org/job/PDFBox-trunk/1053/changes

Changes:

[lehmi] PDFBOX-2082: avoid corruption when writing the signature as proposed by
Štěpán Schejbal

--
Started by an SCM change
Building remotely on ubuntu1 (Ubuntu ubuntu) in workspace
https://builds.apache.org/job/PDFBox-trunk/ws/
Updating http://svn.apache.org/repos/asf/pdfbox/trunk at revision
'2014-06-18T19:22:46.786 +'
U fontbox/src/main/java/org/apache/fontbox/util/FontManager.java
U
fontbox/src/main/java/org/apache/fontbox/util/autodetect/FontFileFinder.java
U
fontbox/src/main/java/org/apache/fontbox/util/autodetect/NativeFontDirFinder.java
U fontbox/src/main/java/org/apache/fontbox/cff/Type2CharString.java
U fontbox/src/main/java/org/apache/fontbox/afm/AFMParser.java
U pdfbox/build.xml
U pdfbox/src/main/java/org/apache/pdfbox/util/PDFHighlighter.java
U pdfbox/src/main/java/org/apache/pdfbox/cos/COSDictionary.java
U pdfbox/src/main/java/org/apache/pdfbox/cos/COSFloat.java
U pdfbox/src/main/java/org/apache/pdfbox/pdmodel/font/FontManager.java
U pdfbox/src/main/java/org/apache/pdfbox/pdmodel/font/PDCIDFont.java
U pdfbox/src/main/java/org/apache/pdfbox/pdmodel/font/PDType1Font.java
U
pdfbox/src/main/java/org/apache/pdfbox/pdmodel/font/PDTrueTypeFont.java
U
pdfbox/src/main/java/org/apache/pdfbox/pdmodel/interactive/measurement/PDRectlinearMeasureDictionary.java
U pdfbox/src/main/java/org/apache/pdfbox/pdmodel/PDDocument.java
U
pdfbox/src/main/java/org/apache/pdfbox/pdmodel/documentinterchange/taggedpdf/PDStandardAttributeObject.java
U
pdfbox/src/main/java/org/apache/pdfbox/pdmodel/documentinterchange/taggedpdf/StandardStructureTypes.java
U
pdfbox/src/main/java/org/apache/pdfbox/pdmodel/documentinterchange/logicalstructure/PDAttributeObject.java
U
pdfbox/src/main/java/org/apache/pdfbox/pdmodel/documentinterchange/logicalstructure/PDUserProperty.java
U
pdfbox/src/main/java/org/apache/pdfbox/pdmodel/encryption/AccessPermission.java
U
pdfbox/src/main/java/org/apache/pdfbox/pdmodel/encryption/PublicKeySecurityHandler.java
U
pdfbox/src/main/java/org/apache/pdfbox/pdmodel/encryption/PDEncryption.java
U pdfbox/src/main/java/org/apache/pdfbox/pdmodel/fdf/FDFAnnotation.java
U
pdfbox/src/main/java/org/apache/pdfbox/pdmodel/graphics/shading/GouraudTriangle.java
U pdfbox/src/main/java/org/apache/pdfbox/pdfwriter/COSWriter.java
U pdfbox/src/main/java/org/apache/pdfbox/pdfviewer/font/TTFGlyph2D.java
U pdfbox/src/test/java/org/apache/pdfbox/cos/TestCOSFloat.java
U
pdfbox/src/test/java/org/apache/pdfbox/pdmodel/common/TestPDNumberTreeNode.java
U pdfbox/src/test/java/org/apache/pdfbox/util/TestTextStripper.java
U
pdfbox/src/test/java/org/apache/pdfbox/util/TestTextStripperPerformance.java
U tools/src/main/java/org/apache/pdfbox/tools/TextToPDF.java
U
examples/src/main/java/org/apache/pdfbox/examples/lucene/IndexPDFFiles.java
U
examples/src/main/java/org/apache/pdfbox/examples/ant/PDFToTextTask.java
At revision 1603592
Parsing POMs
maven3-agent.jar already up to date
maven3-interceptor.jar already up to date
maven3-interceptor-commons.jar already up to date
[trunk] $ /home/hudson/tools/java/latest1.6/bin/java -Xmx1g
-XX:MaxPermSize=300m -cp
/home/jenkins/jenkins-slave/maven3-agent.jar:/home/jenkins/jenkins-slave/tools/hudson.tasks.Maven_MavenInstallation/Maven_3.0.5/boot/plexus-classworlds-2.4.jar
 org.jvnet.hudson.maven3.agent.Maven3Main
/home/jenkins/jenkins-slave/tools/hudson.tasks.Maven_MavenInstallation/Maven_3.0.5
 /home/jenkins/jenkins-slave/slave.jar
/home/jenkins/jenkins-slave/maven3-interceptor.jar
/home/jenkins/jenkins-slave/maven3-interceptor-commons.jar 50997
===[JENKINS REMOTING CAPACITY]=== channel started
log4j:WARN No appenders could be found for logger
(org.apache.commons.beanutils.converters.BooleanConverter).
log4j:WARN Please initialize the log4j system properly.
Executing Maven: -B -f
https://builds.apache.org/job/PDFBox-trunk/ws/trunk/pom.xml
-Dmaven.repo.local=/home/jenkins/jenkins-slave/maven-repositories/0 clean
deploy -Ppedantic
[INFO] Scanning for projects...
[INFO]
[INFO] Reactor Build Order:
[INFO]
[INFO] PDFBox parent
[INFO] Apache FontBox
[INFO] Apache JempBox
[INFO] Apache XmpBox
[INFO] Apache PDFBox
[INFO] Apache Preflight
[INFO] Apache Preflight application
[INFO] Apache PDFBox tools
[INFO] Apache PDFBox application
[INFO] Apache PDFBox examples
[INFO] PDFBox reactor
[INFO]
[INFO]
[INFO] Building PDFBox parent 2.0.0-SNAPSHOT
[INFO]

Build failed in Jenkins: PDFBox-trunk » PDFBox parent #1053

2014-06-18

Thread
Apache Jenkins Server

See
https://builds.apache.org/job/PDFBox-trunk/org.apache.pdfbox$pdfbox-parent/1053/

--
maven3-agent.jar already up to date
maven3-interceptor.jar already up to date
maven3-interceptor-commons.jar already up to date
===[JENKINS REMOTING CAPACITY]=== channel started
log4j:WARN No appenders could be found for logger
(org.apache.commons.beanutils.converters.BooleanConverter).
log4j:WARN Please initialize the log4j system properly.
Executing Maven: -B -f
/home/jenkins/jenkins-slave/workspace/PDFBox-trunk/trunk/pom.xml
-Dmaven.repo.local=/home/jenkins/jenkins-slave/maven-repositories/0 clean
deploy -Ppedantic
[INFO] Scanning for projects...
[INFO]
[INFO] Reactor Build Order:
[INFO]
[INFO] PDFBox parent
[INFO] Apache FontBox
[INFO] Apache JempBox
[INFO] Apache XmpBox
[INFO] Apache PDFBox
[INFO] Apache Preflight
[INFO] Apache Preflight application
[INFO] Apache PDFBox tools
[INFO] Apache PDFBox application
[INFO] Apache PDFBox examples
[INFO] PDFBox reactor
[INFO]
[INFO]
[INFO] Building PDFBox parent 2.0.0-SNAPSHOT
[INFO]
[INFO]
[INFO] --- maven-clean-plugin:2.5:clean (default-clean) @ pdfbox-parent ---
[INFO] Deleting
https://builds.apache.org/job/PDFBox-trunk/org.apache.pdfbox$pdfbox-parent/ws/target
[TASKS] Scanning folder
'https://builds.apache.org/job/PDFBox-trunk/org.apache.pdfbox$pdfbox-parent/ws/'
 for files matching the pattern '**/*.java' - excludes:
[TASKS] Found 0 files to scan for tasks
Found 0 open tasks.
[TASKS] Computing warning deltas based on reference build #1052
[INFO]
[INFO] --- maven-remote-resources-plugin:1.5:process (default) @ pdfbox-parent

[INFO]
[INFO] --- maven-site-plugin:3.3:attach-descriptor (attach-descriptor) @
pdfbox-parent ---
[INFO]
[INFO] --- apache-rat-plugin:0.10:check (default) @ pdfbox-parent ---
[INFO] 51 implicit excludes (use -debug for more details).
[INFO] Exclude: release.properties
[INFO] 1 resources included (use -debug for more details)
[INFO] Rat check: Summary of files. Unapproved: 0 unknown: 0 generated: 0
approved: 1 licence.
[INFO]
[INFO] --- maven-install-plugin:2.5.1:install (default-install) @ pdfbox-parent

[INFO] Installing
https://builds.apache.org/job/PDFBox-trunk/org.apache.pdfbox$pdfbox-parent/ws/pom.xml
 to
/home/jenkins/jenkins-slave/maven-repositories/0/org/apache/pdfbox/pdfbox-parent/2.0.0-SNAPSHOT/pdfbox-parent-2.0.0-SNAPSHOT.pom
[INFO]
[INFO] --- maven-deploy-plugin:2.8.1:deploy (default-deploy) @ pdfbox-parent ---
Downloading:
https://repository.apache.org/content/repositories/snapshots/org/apache/pdfbox/pdfbox-parent/2.0.0-SNAPSHOT/maven-metadata.xml
[WARNING] Could not transfer metadata
org.apache.pdfbox:pdfbox-parent:2.0.0-SNAPSHOT/maven-metadata.xml from/to
apache.snapshots.https
(https://repository.apache.org/content/repositories/snapshots): Failed to
transfer file:
https://repository.apache.org/content/repositories/snapshots/org/apache/pdfbox/pdfbox-parent/2.0.0-SNAPSHOT/maven-metadata.xml.
 Return code is: 503 , ReasonPhrase:Service Temporarily Unavailable.

1.8.6 release prepare dry run fails

2014-06-18

Thread
Andreas Lehmkuehler

Hi,

I've tried to prepare the 1.8.6 release and ran into an issue.

I've ran mvn release:prepare -DdryRun=true and one of the tests has failed
throwing the following message:

testCreateJpeg4BYTE_ABGR(org.apache.pdfbox.pdmodel.graphics.xobject.PDJpegTest):
Invalid argument to native writeImage

testCreateJpegINT_ARGB(org.apache.pdfbox.pdmodel.graphics.xobject.PDJpegTest):
Invalid argument to native writeImage

I've tried jdk6 and jdk7, both with the same result.

Everything works fine when I run the tests within eclipse.

Does anybody have an idea what's wrong here?

BR
Andreas Lehmkühler

Build failed in Jenkins: PDFBox 1.8.x #182

2014-06-18

Thread
Apache Jenkins Server

See https://builds.apache.org/job/PDFBox%201.8.x/182/changes

Changes:

[lehmi] prepare 1.8.6 release

[lehmi] PDFBOX-2082: avoid corruption when writing the signature as proposed by
Štěpán Schejbal

--
Started by an SCM change
Building remotely on ubuntu5 (Ubuntu ubuntu) in workspace
https://builds.apache.org/job/PDFBox%201.8.x/ws/
Updating http://svn.apache.org/repos/asf/pdfbox/branches/1.8 at revision
'2014-06-18T19:29:52.372 +'
U pdfbox/src/main/java/org/apache/pdfbox/pdmodel/PDDocument.java
U pdfbox/src/main/java/org/apache/pdfbox/pdfwriter/COSWriter.java
U RELEASE-NOTES.txt
At revision 1603598
Parsing POMs
maven3-agent.jar already up to date
maven3-interceptor.jar already up to date
maven3-interceptor-commons.jar already up to date
[1.8] $ /home/hudson/tools/java/latest1.5/bin/java -Xmx1g -XX:MaxPermSize=300m
-cp
/home/jenkins/jenkins-slave/maven3-agent.jar:/home/jenkins/jenkins-slave/tools/hudson.tasks.Maven_MavenInstallation/Maven_3.0.3/boot/plexus-classworlds-2.4.jar
 org.jvnet.hudson.maven3.agent.Maven3Main
/home/jenkins/jenkins-slave/tools/hudson.tasks.Maven_MavenInstallation/Maven_3.0.3
 /home/jenkins/jenkins-slave/slave.jar
/home/jenkins/jenkins-slave/maven3-interceptor.jar
/home/jenkins/jenkins-slave/maven3-interceptor-commons.jar 44978
===[JENKINS REMOTING CAPACITY]=== channel started
ERROR: [JENKINS-18403] JDK 5 not supported to run Maven; retrying with slave
Java and setting compile/test properties to point to
/home/hudson/tools/java/latest1.5
maven3-agent.jar already up to date
maven3-interceptor.jar already up to date
maven3-interceptor-commons.jar already up to date
[1.8] $ /home/jenkins/tools/java/jdk1.7.0_55/jre/bin/java -Xmx1g
-XX:MaxPermSize=300m -cp
/home/jenkins/jenkins-slave/maven3-agent.jar:/home/jenkins/jenkins-slave/tools/hudson.tasks.Maven_MavenInstallation/Maven_3.0.3/boot/plexus-classworlds-2.4.jar
 org.jvnet.hudson.maven3.agent.Maven3Main
/home/jenkins/jenkins-slave/tools/hudson.tasks.Maven_MavenInstallation/Maven_3.0.3
 /home/jenkins/jenkins-slave/slave.jar
/home/jenkins/jenkins-slave/maven3-interceptor.jar
/home/jenkins/jenkins-slave/maven3-interceptor-commons.jar 43814
===[JENKINS REMOTING CAPACITY]=== channel started
log4j:WARN No appenders could be found for logger
(org.apache.commons.beanutils.converters.BooleanConverter).
log4j:WARN Please initialize the log4j system properly.
Executing Maven: -B -f
https://builds.apache.org/job/PDFBox%201.8.x/ws/1.8/pom.xml
-Dmaven.repo.local=/home/jenkins/jenkins-slave/maven-repositories/0 clean
deploy -Ppedantic
[INFO] Scanning for projects...
[INFO]
[INFO] Reactor Build Order:
[INFO]
[INFO] PDFBox parent
[INFO] Apache FontBox
[INFO] Apache JempBox
[INFO] Apache XmpBox
[INFO] Apache PDFBox
[INFO] Apache Preflight
[INFO] Apache Preflight application
[INFO] Apache PDFBox for Lucene
[INFO] Apache PDFBox for Ant
[INFO] Apache PDFBox webapp
[INFO] Apache PDFBox application
[INFO] Apache PDFBox examples
[INFO] PDFBox reactor
[INFO]
[INFO]
[INFO] Building PDFBox parent 1.8.6-SNAPSHOT
[INFO]
[INFO]
[INFO] --- maven-clean-plugin:2.4.1:clean (default-clean) @ pdfbox-parent ---
[INFO] Deleting
https://builds.apache.org/job/PDFBox%201.8.x/ws/1.8/parent/target
[INFO]
[INFO] --- maven-remote-resources-plugin:1.2.1:process (default) @
pdfbox-parent ---
[INFO]
[INFO] --- maven-site-plugin:3.0:attach-descriptor (attach-descriptor) @
pdfbox-parent ---
[INFO]
[INFO] --- apache-rat-plugin:0.6:check (default) @ pdfbox-parent ---
[INFO] Exclude: release.properties
[INFO]
[INFO] --- maven-install-plugin:2.3.1:install (default-install) @ pdfbox-parent

[INFO] Installing
https://builds.apache.org/job/PDFBox%201.8.x/ws/1.8/parent/pom.xml to
/home/jenkins/jenkins-slave/maven-repositories/0/org/apache/pdfbox/pdfbox-parent/1.8.6-SNAPSHOT/pdfbox-parent-1.8.6-SNAPSHOT.pom
[INFO]
[INFO] --- maven-deploy-plugin:2.6:deploy (default-deploy) @ pdfbox-parent ---
Downloading:
https://repository.apache.org/content/repositories/snapshots/org/apache/pdfbox/pdfbox-parent/1.8.6-SNAPSHOT/maven-metadata.xml
[WARNING] Could not transfer metadata
org.apache.pdfbox:pdfbox-parent:1.8.6-SNAPSHOT/maven-metadata.xml from/to
apache.snapshots.https
(https://repository.apache.org/content/repositories/snapshots): Error
transferring file: Server returned HTTP response code: 503 for URL:
https://repository.apache.org/content/repositories/snapshots/org/apache/pdfbox/pdfbox-parent/1.8.6-SNAPSHOT/maven-metadata.xml
[INFO]
[INFO] Reactor Summary:
[INFO]
[INFO] PDFBox parent . FAILURE

Re: 1.8.6 release prepare dry run fails

2014-06-18

Thread
John Hewson

Are you using OpenJDK? I think it might not support ARGB JPEGs...

-- John

On 18 Jun 2014, at 12:28, Andreas Lehmkuehler andr...@lehmi.de wrote:

 Hi,

 I've tried to prepare the 1.8.6 release and ran into an issue.

 I've ran mvn release:prepare -DdryRun=true and one of the tests has failed
 throwing the following message:

 testCreateJpeg4BYTE_ABGR(org.apache.pdfbox.pdmodel.graphics.xobject.PDJpegTest):
 Invalid argument to native writeImage

 testCreateJpegINT_ARGB(org.apache.pdfbox.pdmodel.graphics.xobject.PDJpegTest):
 Invalid argument to native writeImage

 I've tried jdk6 and jdk7, both with the same result.

 Everything works fine when I run the tests within eclipse.

 Does anybody have an idea what's wrong here?

 BR
 Andreas Lehmkühler

Jenkins build is back to normal : PDFBox-trunk » PDFBox parent #1054

2014-06-18

Thread
Apache Jenkins Server

See
https://builds.apache.org/job/PDFBox-trunk/org.apache.pdfbox$pdfbox-parent/1054/

Re: Build Failures

2014-06-18

Thread
John Hewson

Still seeing this problem, the failing URL is definitely a 503 from
repository.apache.org

 Failed to transfer file:
 https://repository.apache.org/content/repositories/snapshots/org/apache/pdfbox/pdfbox-parent/2.0.0-SNAPSHOT/maven-metadata.xml.
 Return code is: 503 , ReasonPhrase:Service Temporarily Unavailable.

-- John

On 18 Jun 2014, at 02:51, Andreas Lehmkühler andr...@lehmi.de wrote:

 Hi,

 John Hewson j...@jahewson.com hat am 18. Juni 2014 um 06:15 geschrieben:

 I’m getting intermittent build failures on Jenkins:

 Waiting for Jenkins to finish collecting data[ERROR] Failed to execute goal
 org.apache.maven.plugins:maven-deploy-plugin:2.8.1:deploy (default-deploy) on
 project pdfbox-parent: Failed to retrieve remote metadata
 org.apache.pdfbox:pdfbox-parent:2.0.0-SNAPSHOT/maven-metadata.xml: Could not
 transfer metadata
 org.apache.pdfbox:pdfbox-parent:2.0.0-SNAPSHOT/maven-metadata.xml from/to
 apache.snapshots.https
 (https://repository.apache.org/content/repositories/snapshots): Failed to
 transfer file:
 https://repository.apache.org/content/repositories/snapshots/org/apache/pdfbox/pdfbox-parent/2.0.0-SNAPSHOT/maven-metadata.xml.
 Return code is: 503 , ReasonPhrase:Service Temporarily Unavailable. - [Help
 1]
 [ERROR]
 [ERROR] To see the full stack trace of the errors, re-run Maven with the -e
 switch.
 [ERROR] Re-run Maven using the -X switch to enable full debug logging.
 [ERROR]
 [ERROR] For more information about the errors and possible solutions, please
 read the following articles:
 [ERROR] [Help 1]
 http://cwiki.apache.org/confluence/display/MAVEN/MojoExecutionException

 Looks like the apache SVN repo is having some problems.
 Nope, it's the nexus repos but in the the end with the same effect, the build
 failed. ;-)

 I've manually triggered a new build. Let's see if it works ...

 -- John

 BR
 Andreas Lehmkühler

Jenkins build is back to normal : PDFBox-trunk #1054

2014-06-18

Thread
Apache Jenkins Server

See https://builds.apache.org/job/PDFBox-trunk/1054/changes

Re: 1.8.6 release prepare dry run fails

2014-06-18

Thread
Tilman Hausherr

This will be solved with JDK9:
http://bugs.java.com/bugdatabase/view_bug.do?bug_id=7044758

Tilman

Am 18.06.2014 22:02, schrieb John Hewson:

Are you using OpenJDK? I think it might not support ARGB JPEGs...

-- John

On 18 Jun 2014, at 12:28, Andreas Lehmkuehler andr...@lehmi.de wrote:

Hi,

I've tried to prepare the 1.8.6 release and ran into an issue.

I've ran mvn release:prepare -DdryRun=true and one of the tests has failed
throwing the following message:

testCreateJpeg4BYTE_ABGR(org.apache.pdfbox.pdmodel.graphics.xobject.PDJpegTest):
 Invalid argument to native writeImage

testCreateJpegINT_ARGB(org.apache.pdfbox.pdmodel.graphics.xobject.PDJpegTest):
Invalid argument to native writeImage

I've tried jdk6 and jdk7, both with the same result.

Everything works fine when I run the tests within eclipse.

Does anybody have an idea what's wrong here?

BR
Andreas Lehmkühler

[jira] [Created] (PDFBOX-2148) Handle the Fully Qualified Name of duplicate fields better

2014-06-18

Thread
Gilad Denneboom (JIRA)

Gilad Denneboom created PDFBOX-2148:

 Summary: Handle the Fully Qualified Name of duplicate fields better
 Key: PDFBOX-2148
 URL: https://issues.apache.org/jira/browse/PDFBOX-2148
 Project: PDFBox
 Issue Type: Improvement
 Components: PDModel
Affects Versions: 1.8.5
Reporter: Gilad Denneboom
Priority: Minor
 Attachments: field name test.java, field name test.pdf

When there are multiple copies with the same field name, the
getFullyQualifiedName for each kid in the list of PDField objects returns the
name of the parent, followed by .null. So if the parent field is called
Button2 and it has 4 instances the result of printing out all the names will
be:
Button2.null
Button2.null
Button2.null
Button2.null

Acrobat names these widgets using consecutive numbers, like so:
Button2.0
Button2.1
Button2.2
Button2.3

I had a look at the PDF ISO documentation regarding Field Names (12.7.3.2, p.
434) and this convention is not mentioned there, but it might be a good idea to
use it anyway, no?

I'm attaching a sample code snippet and a PDF that show this issue.

--
This message was sent by Atlassian JIRA
(v6.2#6252)

[jira] [Updated] (PDFBOX-2148) Handle the Fully Qualified Name of duplicate fields better

2014-06-18

Thread
Gilad Denneboom (JIRA)

 [
https://issues.apache.org/jira/browse/PDFBOX-2148?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]

Gilad Denneboom updated PDFBOX-2148:

Attachment: field name test.pdf
field name test.java

 Handle the Fully Qualified Name of duplicate fields better
 --

 Key: PDFBOX-2148
 URL: https://issues.apache.org/jira/browse/PDFBOX-2148
 Project: PDFBox
 Issue Type: Improvement
 Components: PDModel
Affects Versions: 1.8.5
Reporter: Gilad Denneboom
Priority: Minor
 Attachments: field name test.java, field name test.pdf

 When there are multiple copies with the same field name, the
 getFullyQualifiedName for each kid in the list of PDField objects returns the
 name of the parent, followed by .null. So if the parent field is called
 Button2 and it has 4 instances the result of printing out all the names
 will be:
 Button2.null
 Button2.null
 Button2.null
 Button2.null
 Acrobat names these widgets using consecutive numbers, like so:
 Button2.0
 Button2.1
 Button2.2
 Button2.3
 I had a look at the PDF ISO documentation regarding Field Names (12.7.3.2, p.
 434) and this convention is not mentioned there, but it might be a good idea
 to use it anyway, no?
 I'm attaching a sample code snippet and a PDF that show this issue.

--
This message was sent by Atlassian JIRA
(v6.2#6252)

[jira] [Created] (PDFBOX-2149) Font Refactoring

2014-06-18

Thread
John Hewson (JIRA)

John Hewson created PDFBOX-2149:

 Summary: Font Refactoring
 Key: PDFBOX-2149
 URL: https://issues.apache.org/jira/browse/PDFBOX-2149
 Project: PDFBox
 Issue Type: Improvement
 Components: FontBox, PDModel
Affects Versions: 2.0.0
Reporter: John Hewson

To fix bugs such as PDFBOX-2140 and to enable TTF embedding we need to sort out
long-standing font/text encoding issues. The main issue is that encoding is
done in an ad-hoc manner, sometimes in the PDFont subclasses, sometimes
elsewhere. For example TTFGlyph2D does its own decoding, and this code is copy
 pasted into PDTrueTypeFont. Likewise, PDFont handles CMaps and Encodings
despite the fact that these two encoding methods are mutually exclusive. The
end result is that the process of reading Encodings/CMaps is often following
rules which are completely invalid for that font type but mostly work by luck.

Phase 1

- Refactor PDFont subclasses to remove setXXX methods which allow the object to
be corrupted. Proper use of inheritance can remove all cases where public
setXXX methods are used during font loading.

- Clean up TTF loading and the loadTTF in anticipation of Unicode TTF
embedding, FontBox's TrueTypeFont class is externally mutable via setXXX
methods used only by TTFParser: these can be made package-private.

- the Encoding class and EncodingManager could do with some cleaning up prior
to further refactoring.

- PDSimpleFont does not do anything, its functionality should be moved into its
superclass, PDFont.

- PDFont#determineEncoding() loads CMaps when only Encodings are applicable,
and vice versa. Loading needs to be pushed down into the appropriate
subclasses, as a starting point the relevant code should at least be copied
into the relevant subclasses ready for further refactoring.

- TTFGlyph2D does its own decoding of char codes, rather than using the fonts
#encode method (fair enough because #encode is broken) and there's a copy and
pasted version of the same code in PDTrueTypeFont - we need to consolidate this
code into PDTrueTypeFont where it belongs.

Phase 2

- Refactor loading of CMaps and Encodings from font dictionaries, this will
involve changes to PDFont and its subclasses to delegate loading to subclasses
where it can be properly encapsulated

- May need to alter the class hierarchy w.r.t CIDFont to facilitate this, as
CIDFont isn't really a PDFont - it's parent Type0 font is responsible for its
CMap. We'll see.

Phase 3

- Refactor the decoding of character codes by PDFont and its subclasses, this
will involve replacing the #getCodeFromArray, #encode and #encodeToCID methods.

- Fix decoding of content stream character codes in PDFStreamEngine, using the
newly refactored PDFont and using the current font's CMap to determine the code
width.

--
This message was sent by Atlassian JIRA
(v6.2#6252)

[jira] [Updated] (PDFBOX-2149) Font Refactoring

2014-06-18

Thread
John Hewson (JIRA)

 [
https://issues.apache.org/jira/browse/PDFBOX-2149?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]

John Hewson updated PDFBOX-2149:

Description:
To fix bugs such as PDFBOX-2140 and to enable TTF embedding we need to sort out
long-standing font/text encoding issues. The main issue is that encoding is
done in an ad-hoc manner, sometimes in the PDFont subclasses, sometimes
elsewhere. For example TTFGlyph2D does its own decoding, and this code is copy
 pasted into PDTrueTypeFont. Likewise, PDFont handles CMaps and Encodings
despite the fact that these two encoding methods are mutually exclusive. The
end result is that the process of reading Encodings/CMaps is often following
rules which are completely invalid for that font type but mostly work by luck.

Phase 1

- Refactor PDFont subclasses to remove setXXX methods which allow the object to
be corrupted. Proper use of inheritance can remove all cases where public
setXXX methods are used during font loading.

- Clean up TTF loading and the loadTTF in anticipation of Unicode TTF
embedding, FontBox's TrueTypeFont class is externally mutable via setXXX
methods used only by TTFParser: these can be made package-private.

- the Encoding class and EncodingManager could do with some cleaning up prior
to further refactoring.

- PDSimpleFont does not do anything, its functionality should be moved into its
superclass, PDFont.

- PDFont#determineEncoding() loads CMaps when only Encodings are applicable,
and vice versa. Loading needs to be pushed down into the appropriate
subclasses, as a starting point the relevant code should at least be copied
into the relevant subclasses ready for further refactoring.

- TTFGlyph2D does its own decoding of char codes, rather than using the fonts
#encode method (fair enough because #encode is broken) and there's a copy and
pasted version of the same code in PDTrueTypeFont - we need to consolidate this
code into PDTrueTypeFont where it belongs.

Phase 2

- Refactor loading of CMaps and Encodings from font dictionaries, this will
involve changes to PDFont and its subclasses to delegate loading to subclasses
where it can be properly encapsulated

- May need to alter the class hierarchy w.r.t CIDFont to facilitate this, as
CIDFont isn't really a PDFont - it's parent Type0 font is responsible for its
CMap. We'll see.

Phase 3

- Refactor the decoding of character codes by PDFont and its subclasses, this
will involve replacing the #getCodeFromArray, #encode and #encodeToCID methods.

- Fix decoding of content stream character codes in PDFStreamEngine, using the
newly refactored PDFont and using the current font's CMap to determine the code
width.

Phase 4

- Add support for generating embedded TTFs with Unicode

 was:
To fix bugs such as PDFBOX-2140 and to enable TTF embedding we need to sort out
long-standing font/text encoding issues. The main issue is that encoding is
done in an ad-hoc manner, sometimes in the PDFont subclasses, sometimes
elsewhere. For example TTFGlyph2D does its own decoding, and this code is copy
 pasted into PDTrueTypeFont. Likewise, PDFont handles CMaps and Encodings
despite the fact that these two encoding methods are mutually exclusive. The
end result is that the process of reading Encodings/CMaps is often following
rules which are completely invalid for that font type but mostly work by luck.

Phase 1

- Refactor PDFont subclasses to remove setXXX methods which allow the object to
be corrupted. Proper use of inheritance can remove all cases where public
setXXX methods are used during font loading.

- Clean up TTF loading and the loadTTF in anticipation of Unicode TTF
embedding, FontBox's TrueTypeFont class is externally mutable via setXXX
methods used only by TTFParser: these can be made package-private.

- the Encoding class and EncodingManager could do with some cleaning up prior
to further refactoring.

- PDSimpleFont does not do anything, its functionality should be moved into its
superclass, PDFont.

- PDFont#determineEncoding() loads CMaps when only Encodings are applicable,
and vice versa. Loading needs to be pushed down into the appropriate
subclasses, as a starting point the relevant code should at least be copied
into the relevant subclasses ready for further refactoring.

- TTFGlyph2D does its own decoding of char codes, rather than using the fonts
#encode method (fair enough because #encode is broken) and there's a copy and
pasted version of the same code in PDTrueTypeFont - we need to consolidate this
code into PDTrueTypeFont where it belongs.

Phase 2

- Refactor loading of CMaps and Encodings from font dictionaries, this will
involve changes to PDFont and its subclasses to delegate loading to subclasses
where it can be properly encapsulated

- May need to alter the class hierarchy w.r.t CIDFont to facilitate this, as
CIDFont isn't really a PDFont - it's parent Type0 font is

[jira] [Updated] (PDFBOX-2149) Font Refactoring

2014-06-18

Thread
John Hewson (JIRA)

 [
https://issues.apache.org/jira/browse/PDFBOX-2149?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]

John Hewson updated PDFBOX-2149:

Description:
To fix bugs such as PDFBOX-2140 and to enable TTF embedding we need to sort out
long-standing font/text encoding issues. The main issue is that encoding is
done in an ad-hoc manner, sometimes in the PDFont subclasses, sometimes
elsewhere. For example TTFGlyph2D does its own decoding, and this code is copy
 pasted into PDTrueTypeFont. Likewise, PDFont handles CMaps and Encodings
despite the fact that these two encoding methods are mutually exclusive. The
end result is that the process of reading Encodings/CMaps is often following
rules which are completely invalid for that font type but mostly work by luck.

Phase 1

- Refactor PDFont subclasses to remove setXXX methods which allow the object to
be corrupted. Proper use of inheritance can remove all cases where public
setXXX methods are used during font loading.

- Clean up TTF loading and the loadTTF in anticipation of Unicode TTF
embedding, FontBox's TrueTypeFont class is externally mutable via setXXX
methods used only by TTFParser: these can be made package-private.

- the Encoding class and EncodingManager could do with some cleaning up prior
to further refactoring.

- PDSimpleFont does not do anything, its functionality should be moved into its
superclass, PDFont.

- PDFont#determineEncoding() loads CMaps when only Encodings are applicable,
and vice versa. Loading needs to be pushed down into the appropriate
subclasses, as a starting point the relevant code should at least be copied
into the relevant subclasses ready for further refactoring.

- TTFGlyph2D does its own decoding of char codes, rather than using the font's
#encode method (fair enough because #encode is broken) and there's a copy and
pasted version of the same code in PDTrueTypeFont - we need to consolidate this
code into PDTrueTypeFont where it belongs.

Phase 2

- Refactor loading of CMaps and Encodings from font dictionaries, this will
involve changes to PDFont and its subclasses to delegate loading to subclasses
where it can be properly encapsulated

- May need to alter the class hierarchy w.r.t CIDFont to facilitate this, as
CIDFont isn't really a PDFont - it's parent Type0 font is responsible for its
CMap. We'll see.

Phase 3

- Refactor the decoding of character codes by PDFont and its subclasses, this
will involve replacing the #getCodeFromArray, #encode and #encodeToCID methods.

- Fix decoding of content stream character codes in PDFStreamEngine, using the
newly refactored PDFont and using the current font's CMap to determine the code
width.

Phase 4

- Add support for generating embedded TTFs with Unicode

 was:
To fix bugs such as PDFBOX-2140 and to enable TTF embedding we need to sort out
long-standing font/text encoding issues. The main issue is that encoding is
done in an ad-hoc manner, sometimes in the PDFont subclasses, sometimes
elsewhere. For example TTFGlyph2D does its own decoding, and this code is copy
 pasted into PDTrueTypeFont. Likewise, PDFont handles CMaps and Encodings
despite the fact that these two encoding methods are mutually exclusive. The
end result is that the process of reading Encodings/CMaps is often following
rules which are completely invalid for that font type but mostly work by luck.

Phase 1

- Refactor PDFont subclasses to remove setXXX methods which allow the object to
be corrupted. Proper use of inheritance can remove all cases where public
setXXX methods are used during font loading.

- Clean up TTF loading and the loadTTF in anticipation of Unicode TTF
embedding, FontBox's TrueTypeFont class is externally mutable via setXXX
methods used only by TTFParser: these can be made package-private.

- the Encoding class and EncodingManager could do with some cleaning up prior
to further refactoring.

- PDSimpleFont does not do anything, its functionality should be moved into its
superclass, PDFont.

- PDFont#determineEncoding() loads CMaps when only Encodings are applicable,
and vice versa. Loading needs to be pushed down into the appropriate
subclasses, as a starting point the relevant code should at least be copied
into the relevant subclasses ready for further refactoring.

- TTFGlyph2D does its own decoding of char codes, rather than using the fonts
#encode method (fair enough because #encode is broken) and there's a copy and
pasted version of the same code in PDTrueTypeFont - we need to consolidate this
code into PDTrueTypeFont where it belongs.

Phase 2

- Refactor loading of CMaps and Encodings from font dictionaries, this will
involve changes to PDFont and its subclasses to delegate loading to subclasses
where it can be properly encapsulated

- May need to alter the class hierarchy w.r.t CIDFont to facilitate this, as
CIDFont isn't really a PDFont - it's parent Type0 font is

[jira] [Updated] (PDFBOX-2149) Font Refactoring

2014-06-18

Thread
John Hewson (JIRA)

 [
https://issues.apache.org/jira/browse/PDFBOX-2149?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]

John Hewson updated PDFBOX-2149:

Description:
To fix bugs such as PDFBOX-2140 and to enable Unicode TTF embedding we need to
sort out long-standing font/text encoding issues. The main issue is that
encoding is done in an ad-hoc manner, sometimes in the PDFont subclasses,
sometimes elsewhere. For example TTFGlyph2D does its own decoding, and this
code is copy pasted into PDTrueTypeFont. Likewise, PDFont handles CMaps and
Encodings despite the fact that these two encoding methods are mutually
exclusive. The end result is that the process of reading Encodings/CMaps is
often following rules which are completely invalid for that font type but
mostly work by luck.

Phase 1

- Refactor PDFont subclasses to remove setXXX methods which allow the object to
be corrupted. Proper use of inheritance can remove all cases where public
setXXX methods are used during font loading.

- Clean up TTF loading and the loadTTF in anticipation of Unicode TTF
embedding, FontBox's TrueTypeFont class is externally mutable via setXXX
methods used only by TTFParser: these can be made package-private.

- the Encoding class and EncodingManager could do with some cleaning up prior
to further refactoring.

- PDSimpleFont does not do anything, its functionality should be moved into its
superclass, PDFont.

- PDFont#determineEncoding() loads CMaps when only Encodings are applicable,
and vice versa. Loading needs to be pushed down into the appropriate
subclasses, as a starting point the relevant code should at least be copied
into the relevant subclasses ready for further refactoring.

- TTFGlyph2D does its own decoding of char codes, rather than using the font's
#encode method (fair enough because #encode is broken) and there's a copy and
pasted version of the same code in PDTrueTypeFont - we need to consolidate this
code into PDTrueTypeFont where it belongs.

Phase 2

- Refactor loading of CMaps and Encodings from font dictionaries, this will
involve changes to PDFont and its subclasses to delegate loading to subclasses
where it can be properly encapsulated

- May need to alter the class hierarchy w.r.t CIDFont to facilitate this, as
CIDFont isn't really a PDFont - it's parent Type0 font is responsible for its
CMap. We'll see.

Phase 3

- Refactor the decoding of character codes by PDFont and its subclasses, this
will involve replacing the #getCodeFromArray, #encode and #encodeToCID methods.

- Fix decoding of content stream character codes in PDFStreamEngine, using the
newly refactored PDFont and using the current font's CMap to determine the code
width.

Phase 4

- Add support for generating embedded TTFs with Unicode

 was:
To fix bugs such as PDFBOX-2140 and to enable TTF embedding we need to sort out
long-standing font/text encoding issues. The main issue is that encoding is
done in an ad-hoc manner, sometimes in the PDFont subclasses, sometimes
elsewhere. For example TTFGlyph2D does its own decoding, and this code is copy
 pasted into PDTrueTypeFont. Likewise, PDFont handles CMaps and Encodings
despite the fact that these two encoding methods are mutually exclusive. The
end result is that the process of reading Encodings/CMaps is often following
rules which are completely invalid for that font type but mostly work by luck.

Phase 1

- Refactor PDFont subclasses to remove setXXX methods which allow the object to
be corrupted. Proper use of inheritance can remove all cases where public
setXXX methods are used during font loading.

- Clean up TTF loading and the loadTTF in anticipation of Unicode TTF
embedding, FontBox's TrueTypeFont class is externally mutable via setXXX
methods used only by TTFParser: these can be made package-private.

- the Encoding class and EncodingManager could do with some cleaning up prior
to further refactoring.

- PDSimpleFont does not do anything, its functionality should be moved into its
superclass, PDFont.

- PDFont#determineEncoding() loads CMaps when only Encodings are applicable,
and vice versa. Loading needs to be pushed down into the appropriate
subclasses, as a starting point the relevant code should at least be copied
into the relevant subclasses ready for further refactoring.

- TTFGlyph2D does its own decoding of char codes, rather than using the font's
#encode method (fair enough because #encode is broken) and there's a copy and
pasted version of the same code in PDTrueTypeFont - we need to consolidate this
code into PDTrueTypeFont where it belongs.

Phase 2

- Refactor loading of CMaps and Encodings from font dictionaries, this will
involve changes to PDFont and its subclasses to delegate loading to subclasses
where it can be properly encapsulated

- May need to alter the class hierarchy w.r.t CIDFont to facilitate this, as
CIDFont isn't really a PDFont - it's parent Type0 font is

[jira] [Commented] (PDFBOX-2149) Font Refactoring

2014-06-18

Thread
John Hewson (JIRA)

[
https://issues.apache.org/jira/browse/PDFBOX-2149?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanelfocusedCommentId=14036378#comment-14036378
]

John Hewson commented on PDFBOX-2149:
-

I've begun phase 1 with [r1603633|http://svn.apache.org/r1603633]:

- Clean up TTF loading and the loadTTF in anticipation of Unicode TTF
embedding, FontBox's TrueTypeFont class is externally mutable via setXXX
methods used only by TTFParser: these can be made package-private.

This removes some public API methods which don't work in practice - if anybody
is missing something I've overlooked, let me know.

 Font Refactoring

 Key: PDFBOX-2149
 URL: https://issues.apache.org/jira/browse/PDFBOX-2149
 Project: PDFBox
 Issue Type: Improvement
 Components: FontBox, PDModel
Affects Versions: 2.0.0
Reporter: John Hewson

 To fix bugs such as PDFBOX-2140 and to enable Unicode TTF embedding we need
 to sort out long-standing font/text encoding issues. The main issue is that
 encoding is done in an ad-hoc manner, sometimes in the PDFont subclasses,
 sometimes elsewhere. For example TTFGlyph2D does its own decoding, and this
 code is copy pasted into PDTrueTypeFont. Likewise, PDFont handles CMaps and
 Encodings despite the fact that these two encoding methods are mutually
 exclusive. The end result is that the process of reading Encodings/CMaps is
 often following rules which are completely invalid for that font type but
 mostly work by luck.
 Phase 1
 - Refactor PDFont subclasses to remove setXXX methods which allow the object
 to be corrupted. Proper use of inheritance can remove all cases where public
 setXXX methods are used during font loading.
 - Clean up TTF loading and the loadTTF in anticipation of Unicode TTF
 embedding, FontBox's TrueTypeFont class is externally mutable via setXXX
 methods used only by TTFParser: these can be made package-private.
 - the Encoding class and EncodingManager could do with some cleaning up prior
 to further refactoring.
 - PDSimpleFont does not do anything, its functionality should be moved into
 its superclass, PDFont.
 - PDFont#determineEncoding() loads CMaps when only Encodings are applicable,
 and vice versa. Loading needs to be pushed down into the appropriate
 subclasses, as a starting point the relevant code should at least be copied
 into the relevant subclasses ready for further refactoring.
 - TTFGlyph2D does its own decoding of char codes, rather than using the
 font's #encode method (fair enough because #encode is broken) and there's a
 copy and pasted version of the same code in PDTrueTypeFont - we need to
 consolidate this code into PDTrueTypeFont where it belongs.
 Phase 2
 - Refactor loading of CMaps and Encodings from font dictionaries, this will
 involve changes to PDFont and its subclasses to delegate loading to
 subclasses where it can be properly encapsulated
 - May need to alter the class hierarchy w.r.t CIDFont to facilitate this, as
 CIDFont isn't really a PDFont - it's parent Type0 font is responsible for its
 CMap. We'll see.
 Phase 3
 - Refactor the decoding of character codes by PDFont and its subclasses, this
 will involve replacing the #getCodeFromArray, #encode and #encodeToCID
 methods.
 - Fix decoding of content stream character codes in PDFStreamEngine, using
 the newly refactored PDFont and using the current font's CMap to determine
 the code width.
 Phase 4
 - Add support for generating embedded TTFs with Unicode

--
This message was sent by Atlassian JIRA
(v6.2#6252)

[jira] [Commented] (PDFBOX-2145) Clean up PDFStreamEngine and PDFTextStripper

2014-06-18

Thread
Petr Slaby (JIRA)

[
https://issues.apache.org/jira/browse/PDFBOX-2145?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanelfocusedCommentId=14036392#comment-14036392
]

Petr Slaby commented on PDFBOX-2145:

After the change of TextPosition, the fields x and y are useless. Previously,
they were used to cache the value in getX() resp. getY()

 Clean up PDFStreamEngine and PDFTextStripper

 Key: PDFBOX-2145
 URL: https://issues.apache.org/jira/browse/PDFBOX-2145
 Project: PDFBox
 Issue Type: Improvement
 Components: Text extraction
Affects Versions: 2.0.0
Reporter: John Hewson
Assignee: John Hewson
Priority: Minor

 PDFStreamEngine and PDFTextStripper don't really meet our coding conventions
 and have several unused methods and deprecated code which can safely be
 removed.
 This should clear the way to fixing some bugs in PDFStreamEngine,
 PDFTextStripper and the various PDFont classes related to text encoding.

--
This message was sent by Atlassian JIRA
(v6.2#6252)

Re: 1.8.6 release prepare dry run fails

2014-06-18

Thread
Andreas Lehmkuehler

Am 18.06.2014 22:02, schrieb John Hewson:

Are you using OpenJDK? I think it might not support ARGB JPEGs...

I've tried different jdk and OpenJDK ... I'm going to continue my efforts
tomorrow.

-- John

BR
Andreas Lehmkühler

On 18 Jun 2014, at 12:28, Andreas Lehmkuehler andr...@lehmi.de wrote:

Hi,

I've tried to prepare the 1.8.6 release and ran into an issue.

I've ran mvn release:prepare -DdryRun=true and one of the tests has failed
throwing the following message:

testCreateJpeg4BYTE_ABGR(org.apache.pdfbox.pdmodel.graphics.xobject.PDJpegTest):
 Invalid argument to native writeImage

testCreateJpegINT_ARGB(org.apache.pdfbox.pdmodel.graphics.xobject.PDJpegTest):
Invalid argument to native writeImage

I've tried jdk6 and jdk7, both with the same result.

Everything works fine when I run the tests within eclipse.

Does anybody have an idea what's wrong here?

BR
Andreas Lehmkühler

Re: Build Failures

2014-06-18

Thread
Andreas Lehmkuehler

Am 18.06.2014 22:07, schrieb John Hewson:

Still seeing this problem, the failing URL is definitely a 503 from
repository.apache.org

Failed to transfer file:
https://repository.apache.org/content/repositories/snapshots/org/apache/pdfbox/pdfbox-parent/2.0.0-SNAPSHOT/maven-metadata.xml.
 Return code is: 503 , ReasonPhrase:Service Temporarily Unavailable.

Yes, Unfortunately nexus seems to be a little bit unstable these days.

I'm pretty sure that infra is still on it.

BR
Andreas Lehmkühler

-- John

On 18 Jun 2014, at 02:51, Andreas Lehmkühler andr...@lehmi.de wrote:

Hi,

John Hewson j...@jahewson.com hat am 18. Juni 2014 um 06:15 geschrieben:

I’m getting intermittent build failures on Jenkins:

Waiting for Jenkins to finish collecting data[ERROR] Failed to execute goal
org.apache.maven.plugins:maven-deploy-plugin:2.8.1:deploy (default-deploy) on
project pdfbox-parent: Failed to retrieve remote metadata
org.apache.pdfbox:pdfbox-parent:2.0.0-SNAPSHOT/maven-metadata.xml: Could not
transfer metadata
org.apache.pdfbox:pdfbox-parent:2.0.0-SNAPSHOT/maven-metadata.xml from/to
apache.snapshots.https
(https://repository.apache.org/content/repositories/snapshots): Failed to
transfer file:
https://repository.apache.org/content/repositories/snapshots/org/apache/pdfbox/pdfbox-parent/2.0.0-SNAPSHOT/maven-metadata.xml.
Return code is: 503 , ReasonPhrase:Service Temporarily Unavailable. - [Help
1]
[ERROR]
[ERROR] To see the full stack trace of the errors, re-run Maven with the -e
switch.
[ERROR] Re-run Maven using the -X switch to enable full debug logging.
[ERROR]
[ERROR] For more information about the errors and possible solutions, please
read the following articles:
[ERROR] [Help 1]
http://cwiki.apache.org/confluence/display/MAVEN/MojoExecutionException

Looks like the apache SVN repo is having some problems.

Nope, it's the nexus repos but in the the end with the same effect, the build
failed. ;-)

I've manually triggered a new build. Let's see if it works ...

-- John

BR
Andreas Lehmkühler

[jira] [Commented] (PDFBOX-2149) Font Refactoring

2014-06-18

Thread
John Hewson (JIRA)

[
https://issues.apache.org/jira/browse/PDFBOX-2149?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanelfocusedCommentId=14036494#comment-14036494
]

John Hewson commented on PDFBOX-2149:
-

Completed phase 1 with [r1603653|http://svn.apache.org/r1603653]:

- Refactor PDFont subclasses to remove setXXX methods which allow the object to
be corrupted. Proper use of inheritance can remove all cases where public
setXXX methods are used during font loading.

- the Encoding class and EncodingManager could do with some cleaning up prior
to further refactoring.

- PDSimpleFont does not do anything, its functionality should be moved into its
superclass, PDFont.

- PDFont#determineEncoding() loads CMaps when only Encodings are applicable,
and vice versa. Loading needs to be pushed down into the appropriate
subclasses, as a starting point the relevant code should at least be copied
into the relevant subclasses ready for further refactoring.

- TTFGlyph2D does its own decoding of char codes, rather than using the font's
#encode method (fair enough because #encode is broken) and there's a copy and
pasted version of the same code in PDTrueTypeFont - we need to consolidate this
code into PDTrueTypeFont where it belongs.

This commit is mostly devoted to deleting public setXXX methods and moving
their functionality into font constructors. There shouldn't be any
functionality changes, if there are, let me know.

 Font Refactoring

 Key: PDFBOX-2149
 URL: https://issues.apache.org/jira/browse/PDFBOX-2149
 Project: PDFBox
 Issue Type: Improvement
 Components: FontBox, PDModel
Affects Versions: 2.0.0
Reporter: John Hewson

 To fix bugs such as PDFBOX-2140 and to enable Unicode TTF embedding we need
 to sort out long-standing font/text encoding issues. The main issue is that
 encoding is done in an ad-hoc manner, sometimes in the PDFont subclasses,
 sometimes elsewhere. For example TTFGlyph2D does its own decoding, and this
 code is copy pasted into PDTrueTypeFont. Likewise, PDFont handles CMaps and
 Encodings despite the fact that these two encoding methods are mutually
 exclusive. The end result is that the process of reading Encodings/CMaps is
 often following rules which are completely invalid for that font type but
 mostly work by luck.
 Phase 1
 - Refactor PDFont subclasses to remove setXXX methods which allow the object
 to be corrupted. Proper use of inheritance can remove all cases where public
 setXXX methods are used during font loading.
 - Clean up TTF loading and the loadTTF in anticipation of Unicode TTF
 embedding, FontBox's TrueTypeFont class is externally mutable via setXXX
 methods used only by TTFParser: these can be made package-private.
 - the Encoding class and EncodingManager could do with some cleaning up prior
 to further refactoring.
 - PDSimpleFont does not do anything, its functionality should be moved into
 its superclass, PDFont.
 - PDFont#determineEncoding() loads CMaps when only Encodings are applicable,
 and vice versa. Loading needs to be pushed down into the appropriate
 subclasses, as a starting point the relevant code should at least be copied
 into the relevant subclasses ready for further refactoring.
 - TTFGlyph2D does its own decoding of char codes, rather than using the
 font's #encode method (fair enough because #encode is broken) and there's a
 copy and pasted version of the same code in PDTrueTypeFont - we need to
 consolidate this code into PDTrueTypeFont where it belongs.
 Phase 2
 - Refactor loading of CMaps and Encodings from font dictionaries, this will
 involve changes to PDFont and its subclasses to delegate loading to
 subclasses where it can be properly encapsulated
 - May need to alter the class hierarchy w.r.t CIDFont to facilitate this, as
 CIDFont isn't really a PDFont - it's parent Type0 font is responsible for its
 CMap. We'll see.
 Phase 3
 - Refactor the decoding of character codes by PDFont and its subclasses, this
 will involve replacing the #getCodeFromArray, #encode and #encodeToCID
 methods.
 - Fix decoding of content stream character codes in PDFStreamEngine, using
 the newly refactored PDFont and using the current font's CMap to determine
 the code width.
 Phase 4
 - Add support for generating embedded TTFs with Unicode

--
This message was sent by Atlassian JIRA
(v6.2#6252)

[jira] [Commented] (PDFBOX-2149) Font Refactoring

2014-06-18

Thread
Tilman Hausherr (JIRA)

[
https://issues.apache.org/jira/browse/PDFBOX-2149?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanelfocusedCommentId=14036505#comment-14036505
]

Tilman Hausherr commented on PDFBOX-2149:
-

Just before you had the last commit, I did a diff test and the file of
PDFBOX-1452 came up differently. Instead of Signature not verified it says
Pignature k ot s erified.

 Font Refactoring

 Key: PDFBOX-2149
 URL: https://issues.apache.org/jira/browse/PDFBOX-2149
 Project: PDFBox
 Issue Type: Improvement
 Components: FontBox, PDModel
Affects Versions: 2.0.0
Reporter: John Hewson

 To fix bugs such as PDFBOX-2140 and to enable Unicode TTF embedding we need
 to sort out long-standing font/text encoding issues. The main issue is that
 encoding is done in an ad-hoc manner, sometimes in the PDFont subclasses,
 sometimes elsewhere. For example TTFGlyph2D does its own decoding, and this
 code is copy pasted into PDTrueTypeFont. Likewise, PDFont handles CMaps and
 Encodings despite the fact that these two encoding methods are mutually
 exclusive. The end result is that the process of reading Encodings/CMaps is
 often following rules which are completely invalid for that font type but
 mostly work by luck.
 Phase 1
 - Refactor PDFont subclasses to remove setXXX methods which allow the object
 to be corrupted. Proper use of inheritance can remove all cases where public
 setXXX methods are used during font loading.
 - Clean up TTF loading and the loadTTF in anticipation of Unicode TTF
 embedding, FontBox's TrueTypeFont class is externally mutable via setXXX
 methods used only by TTFParser: these can be made package-private.
 - the Encoding class and EncodingManager could do with some cleaning up prior
 to further refactoring.
 - PDSimpleFont does not do anything, its functionality should be moved into
 its superclass, PDFont.
 - PDFont#determineEncoding() loads CMaps when only Encodings are applicable,
 and vice versa. Loading needs to be pushed down into the appropriate
 subclasses, as a starting point the relevant code should at least be copied
 into the relevant subclasses ready for further refactoring.
 - TTFGlyph2D does its own decoding of char codes, rather than using the
 font's #encode method (fair enough because #encode is broken) and there's a
 copy and pasted version of the same code in PDTrueTypeFont - we need to
 consolidate this code into PDTrueTypeFont where it belongs.
 Phase 2
 - Refactor loading of CMaps and Encodings from font dictionaries, this will
 involve changes to PDFont and its subclasses to delegate loading to
 subclasses where it can be properly encapsulated
 - May need to alter the class hierarchy w.r.t CIDFont to facilitate this, as
 CIDFont isn't really a PDFont - it's parent Type0 font is responsible for its
 CMap. We'll see.
 Phase 3
 - Refactor the decoding of character codes by PDFont and its subclasses, this
 will involve replacing the #getCodeFromArray, #encode and #encodeToCID
 methods.
 - Fix decoding of content stream character codes in PDFStreamEngine, using
 the newly refactored PDFont and using the current font's CMap to determine
 the code width.
 Phase 4
 - Add support for generating embedded TTFs with Unicode

--
This message was sent by Atlassian JIRA
(v6.2#6252)

Build failed in Jenkins: PDFBox-trunk » Apache PDFBox tools #1055

2014-06-18

Thread
Apache Jenkins Server

See
https://builds.apache.org/job/PDFBox-trunk/org.apache.pdfbox$pdfbox-tools/1055/changes

Changes:

[jahewson] PDFBOX-2149: Font Refactoring, Phase 1: PDFont, Encoding, TTFGlyph2D

--
[INFO]
[INFO]
[INFO] Building Apache PDFBox tools 2.0.0-SNAPSHOT
[INFO]
[INFO]
[INFO] --- maven-clean-plugin:2.5:clean (default-clean) @ pdfbox-tools ---
[INFO] Deleting
https://builds.apache.org/job/PDFBox-trunk/org.apache.pdfbox$pdfbox-tools/ws/target
[TASKS] Scanning folder
'https://builds.apache.org/job/PDFBox-trunk/org.apache.pdfbox$pdfbox-tools/ws/'
 for files matching the pattern '**/*.java' - excludes:
[TASKS] Found 32 files to scan for tasks
Found 2 open tasks.
[TASKS] Computing warning deltas based on reference build #1054
[INFO]
[INFO] --- maven-remote-resources-plugin:1.5:process (default) @ pdfbox-tools

[INFO]
[INFO] --- maven-resources-plugin:2.6:resources (default-resources) @
pdfbox-tools ---
[INFO] Using 'ISO-8859-1' encoding to copy filtered resources.
[INFO] skip non existing resourceDirectory
https://builds.apache.org/job/PDFBox-trunk/org.apache.pdfbox$pdfbox-tools/ws/src/main/resources
[INFO] Copying 3 resources
[INFO]
[INFO] --- maven-compiler-plugin:3.1:compile (default-compile) @ pdfbox-tools

[INFO] Changes detected - recompiling the module!
[INFO] Compiling 29 source files to
https://builds.apache.org/job/PDFBox-trunk/org.apache.pdfbox$pdfbox-tools/ws/target/classes
[WARNING] Note:
https://builds.apache.org/job/PDFBox-trunk/org.apache.pdfbox$pdfbox-tools/ws/src/main/java/org/apache/pdfbox/tools/PDFReader.java
 uses unchecked or unsafe operations.
[WARNING] Note: Recompile with -Xlint:unchecked for details.
[INFO]
[INFO] --- maven-resources-plugin:2.6:testResources (default-testResources) @
pdfbox-tools ---
[INFO] Using 'ISO-8859-1' encoding to copy filtered resources.
[INFO] Copying 1 resource
[INFO] Copying 3 resources
[INFO]
[INFO] --- maven-compiler-plugin:3.1:testCompile (default-testCompile) @
pdfbox-tools ---
[INFO] Changes detected - recompiling the module!
[INFO] Compiling 3 source files to
https://builds.apache.org/job/PDFBox-trunk/org.apache.pdfbox$pdfbox-tools/ws/target/test-classes
[INFO]
[INFO] --- maven-surefire-plugin:2.16:test (default-test) @ pdfbox-tools ---
[INFO] Surefire report directory:
https://builds.apache.org/job/PDFBox-trunk/org.apache.pdfbox$pdfbox-tools/ws/target/surefire-reports

 T E S T S

Running org.apache.pdfbox.tools.TestPDFText2HTML
Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.959 sec - in
org.apache.pdfbox.tools.TestPDFText2HTML
Running org.apache.pdfbox.tools.TestTextToPdf
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0 sec - in
org.apache.pdfbox.tools.TestTextToPdf
Running org.apache.pdfbox.tools.TestExtractText
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.202 sec - in
org.apache.pdfbox.tools.TestExtractText

Results :

Tests run: 4, Failures: 0, Errors: 0, Skipped: 0

[JENKINS] Recording test results
[INFO]
[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ pdfbox-tools ---
[INFO] Building jar:
https://builds.apache.org/job/PDFBox-trunk/org.apache.pdfbox$pdfbox-tools/ws/target/pdfbox-tools-2.0.0-SNAPSHOT.jar
[INFO]
[INFO] --- maven-site-plugin:3.3:attach-descriptor (attach-descriptor) @
pdfbox-tools ---
[INFO]
[INFO] --- apache-rat-plugin:0.10:check (default) @ pdfbox-tools ---
[INFO] 51 implicit excludes (use -debug for more details).
[INFO] Exclude: release.properties
[INFO] 34 resources included (use -debug for more details)
[INFO] Rat check: Summary of files. Unapproved: 0 unknown: 0 generated: 0
approved: 33 licence.
[INFO]
[INFO] --- maven-install-plugin:2.5.1:install (default-install) @ pdfbox-tools

[INFO] Installing
https://builds.apache.org/job/PDFBox-trunk/org.apache.pdfbox$pdfbox-tools/ws/target/pdfbox-tools-2.0.0-SNAPSHOT.jar
 to
/home/jenkins/jenkins-slave/maven-repositories/0/org/apache/pdfbox/pdfbox-tools/2.0.0-SNAPSHOT/pdfbox-tools-2.0.0-SNAPSHOT.jar
[INFO] Installing
https://builds.apache.org/job/PDFBox-trunk/org.apache.pdfbox$pdfbox-tools/ws/pom.xml
 to
/home/jenkins/jenkins-slave/maven-repositories/0/org/apache/pdfbox/pdfbox-tools/2.0.0-SNAPSHOT/pdfbox-tools-2.0.0-SNAPSHOT.pom
[INFO]
[INFO] --- maven-deploy-plugin:2.8.1:deploy (default-deploy) @ pdfbox-tools ---
Downloading:
https://repository.apache.org/content/repositories/snapshots/org/apache/pdfbox/pdfbox-tools/2.0.0-SNAPSHOT/maven-metadata.xml
[WARNING] Could not transfer metadata
org.apache.pdfbox:pdfbox-tools:2.0.0-SNAPSHOT/maven-metadata.xml from/to
apache.snapshots.https

Build failed in Jenkins: PDFBox-trunk #1055

2014-06-18

Thread
Apache Jenkins Server

See https://builds.apache.org/job/PDFBox-trunk/1055/changes

Changes:

[jahewson] PDFBOX-2149: Font Refactoring, Phase 1: PDFont, Encoding, TTFGlyph2D

[jahewson] PDFBOX-2145: Clean up TextPosition

[jahewson] PDFBOX-2149: Font Refactoring, Phase 1: TTF

--
[...truncated 798 lines...]
[INFO] Copying 3 resources
[INFO]
[INFO] --- maven-compiler-plugin:3.1:testCompile (default-testCompile) @
preflight-app ---
[INFO] No sources to compile
[INFO]
[INFO] --- maven-surefire-plugin:2.16:test (default-test) @ preflight-app ---
[JENKINS] Recording test results
[INFO]
[INFO] --- maven-bundle-plugin:2.4.0:bundle (default-bundle) @ preflight-app ---
[WARNING] Bundle org.apache.pdfbox:preflight-app:bundle:2.0.0-SNAPSHOT : Unused
Private-Package instructions, no such package(s) on the class path: [!*]
[WARNING] Bundle org.apache.pdfbox:preflight-app:bundle:2.0.0-SNAPSHOT : Export
org.apache.pdfbox.cos, has 1, private references
[org.apache.commons.logging],
[WARNING] Bundle org.apache.pdfbox:preflight-app:bundle:2.0.0-SNAPSHOT : Export
org.apache.pdfbox.encoding, has 1, private references
[org.apache.fontbox.afm],
[WARNING] Bundle org.apache.pdfbox:preflight-app:bundle:2.0.0-SNAPSHOT : Export
org.apache.pdfbox.encoding.conversion, has 1, private references
[org.apache.fontbox.cmap],
[WARNING] Bundle org.apache.pdfbox:preflight-app:bundle:2.0.0-SNAPSHOT : Export
org.apache.pdfbox.pdfviewer.font, has 3, private references
[org.apache.fontbox.ttf, org.apache.fontbox.type1, org.apache.fontbox.cff],
[WARNING] Bundle org.apache.pdfbox:preflight-app:bundle:2.0.0-SNAPSHOT : Export
org.apache.pdfbox.pdmodel.common, has 1, private references
[org.apache.fontbox.util],
[WARNING] Bundle org.apache.pdfbox:preflight-app:bundle:2.0.0-SNAPSHOT : Export
org.apache.pdfbox.pdmodel.font, has 5, private references
[org.apache.fontbox.ttf, org.apache.fontbox.type1, org.apache.fontbox.cmap,
org.apache.fontbox.cff, org.apache.fontbox.afm],
[WARNING] Bundle org.apache.pdfbox:preflight-app:bundle:2.0.0-SNAPSHOT : Export
org.apache.pdfbox.preflight, has 1, private references [org.apache.xmpbox],
[WARNING] Bundle org.apache.pdfbox:preflight-app:bundle:2.0.0-SNAPSHOT : Export
org.apache.pdfbox.preflight.font.container, has 2, private references
[org.apache.fontbox.ttf, org.apache.fontbox.cff],
[WARNING] Bundle org.apache.pdfbox:preflight-app:bundle:2.0.0-SNAPSHOT : Export
org.apache.pdfbox.preflight.font.util, has 1, private references
[org.apache.xmpbox],
[WARNING] Bundle org.apache.pdfbox:preflight-app:bundle:2.0.0-SNAPSHOT : Export
org.apache.pdfbox.preflight.metadata, has 2, private references
[org.apache.xmpbox.schema, org.apache.xmpbox],
[INFO]
[INFO] --- maven-site-plugin:3.3:attach-descriptor (attach-descriptor) @
preflight-app ---
[INFO]
[INFO] --- apache-rat-plugin:0.10:check (default) @ preflight-app ---
[INFO] 51 implicit excludes (use -debug for more details).
[INFO] Exclude: release.properties
[INFO] 3 resources included (use -debug for more details)
[INFO] Rat check: Summary of files. Unapproved: 0 unknown: 0 generated: 0
approved: 1 licence.
[INFO]
[INFO] --- maven-install-plugin:2.5.1:install (default-install) @ preflight-app

[INFO] Installing
https://builds.apache.org/job/PDFBox-trunk/ws/trunk/preflight-app/target/preflight-app-2.0.0-SNAPSHOT.jar
 to
/home/jenkins/jenkins-slave/maven-repositories/0/org/apache/pdfbox/preflight-app/2.0.0-SNAPSHOT/preflight-app-2.0.0-SNAPSHOT.jar
[INFO] Installing
https://builds.apache.org/job/PDFBox-trunk/ws/trunk/preflight-app/pom.xml to
/home/jenkins/jenkins-slave/maven-repositories/0/org/apache/pdfbox/preflight-app/2.0.0-SNAPSHOT/preflight-app-2.0.0-SNAPSHOT.pom
[INFO]
[INFO] --- maven-bundle-plugin:2.4.0:install (default-install) @ preflight-app

[INFO] Installing
org/apache/pdfbox/preflight-app/2.0.0-SNAPSHOT/preflight-app-2.0.0-SNAPSHOT.jar
[INFO] Writing OBR metadata
[INFO]
[INFO] --- maven-deploy-plugin:2.8.1:deploy (default-deploy) @ preflight-app ---
Downloading:
https://repository.apache.org/content/repositories/snapshots/org/apache/pdfbox/preflight-app/2.0.0-SNAPSHOT/maven-metadata.xml
Downloaded:
https://repository.apache.org/content/repositories/snapshots/org/apache/pdfbox/preflight-app/2.0.0-SNAPSHOT/maven-metadata.xml
 (786 B at 0.7 KB/sec)
Uploading:
https://repository.apache.org/content/repositories/snapshots/org/apache/pdfbox/preflight-app/2.0.0-SNAPSHOT/preflight-app-2.0.0-20140618.222114-375.jar
Uploaded:
https://repository.apache.org/content/repositories/snapshots/org/apache/pdfbox/preflight-app/2.0.0-SNAPSHOT/preflight-app-2.0.0-20140618.222114-375.jar
 (7660 KB at 5178.9 KB/sec)
Uploading:
https://repository.apache.org/content/repositories/snapshots/org/apache/pdfbox/preflight-app/2.0.0-SNAPSHOT/preflight-app-2.0.0-20140618.222114-375.pom
Uploaded:

[jira] [Comment Edited] (PDFBOX-2149) Font Refactoring

2014-06-18

Thread
Tilman Hausherr (JIRA)

[
https://issues.apache.org/jira/browse/PDFBOX-2149?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanelfocusedCommentId=14036505#comment-14036505
]

Tilman Hausherr edited comment on PDFBOX-2149 at 6/18/14 10:20 PM:

Just before you had the last commit, I did a diff test and the file of
PDFBOX-1452 came up differently. Instead of Signature not verified it says
Pignature k ot s erified above the yellow ?.

was (Author: tilman):
Just before you had the last commit, I did a diff test and the file of
PDFBOX-1452 came up differently. Instead of Signature not verified it says
Pignature k ot s erified.

 Font Refactoring

 Key: PDFBOX-2149
 URL: https://issues.apache.org/jira/browse/PDFBOX-2149
 Project: PDFBox
 Issue Type: Improvement
 Components: FontBox, PDModel
Affects Versions: 2.0.0
Reporter: John Hewson

 To fix bugs such as PDFBOX-2140 and to enable Unicode TTF embedding we need
 to sort out long-standing font/text encoding issues. The main issue is that
 encoding is done in an ad-hoc manner, sometimes in the PDFont subclasses,
 sometimes elsewhere. For example TTFGlyph2D does its own decoding, and this
 code is copy pasted into PDTrueTypeFont. Likewise, PDFont handles CMaps and
 Encodings despite the fact that these two encoding methods are mutually
 exclusive. The end result is that the process of reading Encodings/CMaps is
 often following rules which are completely invalid for that font type but
 mostly work by luck.
 Phase 1
 - Refactor PDFont subclasses to remove setXXX methods which allow the object
 to be corrupted. Proper use of inheritance can remove all cases where public
 setXXX methods are used during font loading.
 - Clean up TTF loading and the loadTTF in anticipation of Unicode TTF
 embedding, FontBox's TrueTypeFont class is externally mutable via setXXX
 methods used only by TTFParser: these can be made package-private.
 - the Encoding class and EncodingManager could do with some cleaning up prior
 to further refactoring.
 - PDSimpleFont does not do anything, its functionality should be moved into
 its superclass, PDFont.
 - PDFont#determineEncoding() loads CMaps when only Encodings are applicable,
 and vice versa. Loading needs to be pushed down into the appropriate
 subclasses, as a starting point the relevant code should at least be copied
 into the relevant subclasses ready for further refactoring.
 - TTFGlyph2D does its own decoding of char codes, rather than using the
 font's #encode method (fair enough because #encode is broken) and there's a
 copy and pasted version of the same code in PDTrueTypeFont - we need to
 consolidate this code into PDTrueTypeFont where it belongs.
 Phase 2
 - Refactor loading of CMaps and Encodings from font dictionaries, this will
 involve changes to PDFont and its subclasses to delegate loading to
 subclasses where it can be properly encapsulated
 - May need to alter the class hierarchy w.r.t CIDFont to facilitate this, as
 CIDFont isn't really a PDFont - it's parent Type0 font is responsible for its
 CMap. We'll see.
 Phase 3
 - Refactor the decoding of character codes by PDFont and its subclasses, this
 will involve replacing the #getCodeFromArray, #encode and #encodeToCID
 methods.
 - Fix decoding of content stream character codes in PDFStreamEngine, using
 the newly refactored PDFont and using the current font's CMap to determine
 the code width.
 Phase 4
 - Add support for generating embedded TTFs with Unicode

--
This message was sent by Atlassian JIRA
(v6.2#6252)

[jira] [Commented] (PDFBOX-2149) Font Refactoring

2014-06-18

Thread
Tilman Hausherr (JIRA)

[
https://issues.apache.org/jira/browse/PDFBOX-2149?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanelfocusedCommentId=14036613#comment-14036613
]

Tilman Hausherr commented on PDFBOX-2149:
-

PDFBOX-1283 also fails with an NPE.

 Font Refactoring

 Key: PDFBOX-2149
 URL: https://issues.apache.org/jira/browse/PDFBOX-2149
 Project: PDFBox
 Issue Type: Improvement
 Components: FontBox, PDModel
Affects Versions: 2.0.0
Reporter: John Hewson

 To fix bugs such as PDFBOX-2140 and to enable Unicode TTF embedding we need
 to sort out long-standing font/text encoding issues. The main issue is that
 encoding is done in an ad-hoc manner, sometimes in the PDFont subclasses,
 sometimes elsewhere. For example TTFGlyph2D does its own decoding, and this
 code is copy pasted into PDTrueTypeFont. Likewise, PDFont handles CMaps and
 Encodings despite the fact that these two encoding methods are mutually
 exclusive. The end result is that the process of reading Encodings/CMaps is
 often following rules which are completely invalid for that font type but
 mostly work by luck.
 Phase 1
 - Refactor PDFont subclasses to remove setXXX methods which allow the object
 to be corrupted. Proper use of inheritance can remove all cases where public
 setXXX methods are used during font loading.
 - Clean up TTF loading and the loadTTF in anticipation of Unicode TTF
 embedding, FontBox's TrueTypeFont class is externally mutable via setXXX
 methods used only by TTFParser: these can be made package-private.
 - the Encoding class and EncodingManager could do with some cleaning up prior
 to further refactoring.
 - PDSimpleFont does not do anything, its functionality should be moved into
 its superclass, PDFont.
 - PDFont#determineEncoding() loads CMaps when only Encodings are applicable,
 and vice versa. Loading needs to be pushed down into the appropriate
 subclasses, as a starting point the relevant code should at least be copied
 into the relevant subclasses ready for further refactoring.
 - TTFGlyph2D does its own decoding of char codes, rather than using the
 font's #encode method (fair enough because #encode is broken) and there's a
 copy and pasted version of the same code in PDTrueTypeFont - we need to
 consolidate this code into PDTrueTypeFont where it belongs.
 Phase 2
 - Refactor loading of CMaps and Encodings from font dictionaries, this will
 involve changes to PDFont and its subclasses to delegate loading to
 subclasses where it can be properly encapsulated
 - May need to alter the class hierarchy w.r.t CIDFont to facilitate this, as
 CIDFont isn't really a PDFont - it's parent Type0 font is responsible for its
 CMap. We'll see.
 Phase 3
 - Refactor the decoding of character codes by PDFont and its subclasses, this
 will involve replacing the #getCodeFromArray, #encode and #encodeToCID
 methods.
 - Fix decoding of content stream character codes in PDFStreamEngine, using
 the newly refactored PDFont and using the current font's CMap to determine
 the code width.
 Phase 4
 - Add support for generating embedded TTFs with Unicode

--
This message was sent by Atlassian JIRA
(v6.2#6252)

Build failed in Jenkins: PDFBox-trunk » PDFBox parent #1056

2014-06-18

Thread
Apache Jenkins Server

See
https://builds.apache.org/job/PDFBox-trunk/org.apache.pdfbox$pdfbox-parent/1056/

--
maven3-agent.jar already up to date
maven3-interceptor.jar already up to date
maven3-interceptor-commons.jar already up to date
===[JENKINS REMOTING CAPACITY]=== channel started
log4j:WARN No appenders could be found for logger
(org.apache.commons.beanutils.converters.BooleanConverter).
log4j:WARN Please initialize the log4j system properly.
Executing Maven: -B -f
/home/jenkins/jenkins-slave/workspace/PDFBox-trunk/trunk/pom.xml
-Dmaven.repo.local=/home/jenkins/jenkins-slave/maven-repositories/0 clean
deploy -Ppedantic
[INFO] Scanning for projects...
[INFO]
[INFO] Reactor Build Order:
[INFO]
[INFO] PDFBox parent
[INFO] Apache FontBox
[INFO] Apache JempBox
[INFO] Apache XmpBox
[INFO] Apache PDFBox
[INFO] Apache Preflight
[INFO] Apache Preflight application
[INFO] Apache PDFBox tools
[INFO] Apache PDFBox application
[INFO] Apache PDFBox examples
[INFO] PDFBox reactor
[INFO]
[INFO]
[INFO] Building PDFBox parent 2.0.0-SNAPSHOT
[INFO]
[INFO]
[INFO] --- maven-clean-plugin:2.5:clean (default-clean) @ pdfbox-parent ---
[INFO] Deleting
https://builds.apache.org/job/PDFBox-trunk/org.apache.pdfbox$pdfbox-parent/ws/target
[TASKS] Scanning folder
'https://builds.apache.org/job/PDFBox-trunk/org.apache.pdfbox$pdfbox-parent/ws/'
 for files matching the pattern '**/*.java' - excludes:
[TASKS] Found 0 files to scan for tasks
Found 0 open tasks.
[TASKS] Computing warning deltas based on reference build #1055
[INFO]
[INFO] --- maven-remote-resources-plugin:1.5:process (default) @ pdfbox-parent

[INFO]
[INFO] --- maven-site-plugin:3.3:attach-descriptor (attach-descriptor) @
pdfbox-parent ---
[INFO]
[INFO] --- apache-rat-plugin:0.10:check (default) @ pdfbox-parent ---
[INFO] 51 implicit excludes (use -debug for more details).
[INFO] Exclude: release.properties
[INFO] 1 resources included (use -debug for more details)
[INFO] Rat check: Summary of files. Unapproved: 0 unknown: 0 generated: 0
approved: 1 licence.
[INFO]
[INFO] --- maven-install-plugin:2.5.1:install (default-install) @ pdfbox-parent

[INFO] Installing
https://builds.apache.org/job/PDFBox-trunk/org.apache.pdfbox$pdfbox-parent/ws/pom.xml
 to
/home/jenkins/jenkins-slave/maven-repositories/0/org/apache/pdfbox/pdfbox-parent/2.0.0-SNAPSHOT/pdfbox-parent-2.0.0-SNAPSHOT.pom
[INFO]
[INFO] --- maven-deploy-plugin:2.8.1:deploy (default-deploy) @ pdfbox-parent ---
Downloading:
https://repository.apache.org/content/repositories/snapshots/org/apache/pdfbox/pdfbox-parent/2.0.0-SNAPSHOT/maven-metadata.xml
[WARNING] Could not transfer metadata
org.apache.pdfbox:pdfbox-parent:2.0.0-SNAPSHOT/maven-metadata.xml from/to
apache.snapshots.https
(https://repository.apache.org/content/repositories/snapshots): Failed to
transfer file:
https://repository.apache.org/content/repositories/snapshots/org/apache/pdfbox/pdfbox-parent/2.0.0-SNAPSHOT/maven-metadata.xml.
 Return code is: 503 , ReasonPhrase:Service Temporarily Unavailable.

Build failed in Jenkins: PDFBox-trunk #1056

2014-06-18

Thread
Apache Jenkins Server

See https://builds.apache.org/job/PDFBox-trunk/1056/

--
Started by user jahewson
Building remotely on ubuntu2 (Ubuntu ubuntu) in workspace
https://builds.apache.org/job/PDFBox-trunk/ws/
Updating http://svn.apache.org/repos/asf/pdfbox/trunk at revision
'2014-06-19T00:42:06.641 +'
At revision 1603689
no change for http://svn.apache.org/repos/asf/pdfbox/trunk since the previous
build
Parsing POMs
maven3-agent.jar already up to date
maven3-interceptor.jar already up to date
maven3-interceptor-commons.jar already up to date
[trunk] $ /home/hudson/tools/java/latest1.6/bin/java -Xmx1g
-XX:MaxPermSize=300m -cp
/home/jenkins/jenkins-slave/maven3-agent.jar:/home/jenkins/jenkins-slave/tools/hudson.tasks.Maven_MavenInstallation/Maven_3.0.5/boot/plexus-classworlds-2.4.jar
 org.jvnet.hudson.maven3.agent.Maven3Main
/home/jenkins/jenkins-slave/tools/hudson.tasks.Maven_MavenInstallation/Maven_3.0.5
 /home/hudson/jenkins-slave/slave.jar
/home/jenkins/jenkins-slave/maven3-interceptor.jar
/home/jenkins/jenkins-slave/maven3-interceptor-commons.jar 43913
===[JENKINS REMOTING CAPACITY]=== channel started
log4j:WARN No appenders could be found for logger
(org.apache.commons.beanutils.converters.BooleanConverter).
log4j:WARN Please initialize the log4j system properly.
Executing Maven: -B -f
https://builds.apache.org/job/PDFBox-trunk/ws/trunk/pom.xml
-Dmaven.repo.local=/home/jenkins/jenkins-slave/maven-repositories/0 clean
deploy -Ppedantic
[INFO] Scanning for projects...
[INFO]
[INFO] Reactor Build Order:
[INFO]
[INFO] PDFBox parent
[INFO] Apache FontBox
[INFO] Apache JempBox
[INFO] Apache XmpBox
[INFO] Apache PDFBox
[INFO] Apache Preflight
[INFO] Apache Preflight application
[INFO] Apache PDFBox tools
[INFO] Apache PDFBox application
[INFO] Apache PDFBox examples
[INFO] PDFBox reactor
[INFO]
[INFO]
[INFO] Building PDFBox parent 2.0.0-SNAPSHOT
[INFO]
[INFO]
[INFO] --- maven-clean-plugin:2.5:clean (default-clean) @ pdfbox-parent ---
[INFO] Deleting
https://builds.apache.org/job/PDFBox-trunk/ws/trunk/parent/target
[TASKS] Scanning folder
'https://builds.apache.org/job/PDFBox-trunk/ws/trunk/parent' for files
matching the pattern '**/*.java' - excludes:
[TASKS] Found 0 files to scan for tasks
Found 0 open tasks.
[TASKS] Computing warning deltas based on reference build #1055
[INFO]
[INFO] --- maven-remote-resources-plugin:1.5:process (default) @ pdfbox-parent

[INFO]
[INFO] --- maven-site-plugin:3.3:attach-descriptor (attach-descriptor) @
pdfbox-parent ---
[INFO]
[INFO] --- apache-rat-plugin:0.10:check (default) @ pdfbox-parent ---
[INFO] 51 implicit excludes (use -debug for more details).
[INFO] Exclude: release.properties
[INFO] 1 resources included (use -debug for more details)
[INFO] Rat check: Summary of files. Unapproved: 0 unknown: 0 generated: 0
approved: 1 licence.
[INFO]
[INFO] --- maven-install-plugin:2.5.1:install (default-install) @ pdfbox-parent

[INFO] Installing
https://builds.apache.org/job/PDFBox-trunk/ws/trunk/parent/pom.xml to
/home/jenkins/jenkins-slave/maven-repositories/0/org/apache/pdfbox/pdfbox-parent/2.0.0-SNAPSHOT/pdfbox-parent-2.0.0-SNAPSHOT.pom
[INFO]
[INFO] --- maven-deploy-plugin:2.8.1:deploy (default-deploy) @ pdfbox-parent ---
Downloading:
https://repository.apache.org/content/repositories/snapshots/org/apache/pdfbox/pdfbox-parent/2.0.0-SNAPSHOT/maven-metadata.xml
[WARNING] Could not transfer metadata
org.apache.pdfbox:pdfbox-parent:2.0.0-SNAPSHOT/maven-metadata.xml from/to
apache.snapshots.https
(https://repository.apache.org/content/repositories/snapshots): Failed to
transfer file:
https://repository.apache.org/content/repositories/snapshots/org/apache/pdfbox/pdfbox-parent/2.0.0-SNAPSHOT/maven-metadata.xml.
 Return code is: 503 , ReasonPhrase:Service Temporarily Unavailable.
[INFO]
[INFO] Reactor Summary:
[INFO]
[INFO] PDFBox parent . FAILURE [38.743s]
[INFO] Apache FontBox SKIPPED
[INFO] Apache JempBox SKIPPED
[INFO] Apache XmpBox . SKIPPED
[INFO] Apache PDFBox . SKIPPED
[INFO] Apache Preflight .. SKIPPED
[INFO] Apache Preflight application .. SKIPPED
[INFO] Apache PDFBox tools ... SKIPPED
[INFO] Apache PDFBox application . SKIPPED
[INFO] Apache PDFBox examples SKIPPED
[INFO] PDFBox reactor SKIPPED
[INFO]

[jira] [Commented] (PDFBOX-2149) Font Refactoring

2014-06-18

Thread
John Hewson (JIRA)

[
https://issues.apache.org/jira/browse/PDFBOX-2149?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanelfocusedCommentId=14036824#comment-14036824
]

John Hewson commented on PDFBOX-2149:
-

Thanks for spotting this, I've fixed this in
[r1603698|http://svn.apache.org/r1603698]. It was a tricky bug, the Signature
not verified text is inside a visual signature annotation which is rendered
after clear() has been called on the pages resources, which was clearing the
cmap cache in PDTrueTypeFont.

 Font Refactoring

 Key: PDFBOX-2149
 URL: https://issues.apache.org/jira/browse/PDFBOX-2149
 Project: PDFBox
 Issue Type: Improvement
 Components: FontBox, PDModel
Affects Versions: 2.0.0
Reporter: John Hewson

 To fix bugs such as PDFBOX-2140 and to enable Unicode TTF embedding we need
 to sort out long-standing font/text encoding issues. The main issue is that
 encoding is done in an ad-hoc manner, sometimes in the PDFont subclasses,
 sometimes elsewhere. For example TTFGlyph2D does its own decoding, and this
 code is copy pasted into PDTrueTypeFont. Likewise, PDFont handles CMaps and
 Encodings despite the fact that these two encoding methods are mutually
 exclusive. The end result is that the process of reading Encodings/CMaps is
 often following rules which are completely invalid for that font type but
 mostly work by luck.
 Phase 1
 - Refactor PDFont subclasses to remove setXXX methods which allow the object
 to be corrupted. Proper use of inheritance can remove all cases where public
 setXXX methods are used during font loading.
 - Clean up TTF loading and the loadTTF in anticipation of Unicode TTF
 embedding, FontBox's TrueTypeFont class is externally mutable via setXXX
 methods used only by TTFParser: these can be made package-private.
 - the Encoding class and EncodingManager could do with some cleaning up prior
 to further refactoring.
 - PDSimpleFont does not do anything, its functionality should be moved into
 its superclass, PDFont.
 - PDFont#determineEncoding() loads CMaps when only Encodings are applicable,
 and vice versa. Loading needs to be pushed down into the appropriate
 subclasses, as a starting point the relevant code should at least be copied
 into the relevant subclasses ready for further refactoring.
 - TTFGlyph2D does its own decoding of char codes, rather than using the
 font's #encode method (fair enough because #encode is broken) and there's a
 copy and pasted version of the same code in PDTrueTypeFont - we need to
 consolidate this code into PDTrueTypeFont where it belongs.
 Phase 2
 - Refactor loading of CMaps and Encodings from font dictionaries, this will
 involve changes to PDFont and its subclasses to delegate loading to
 subclasses where it can be properly encapsulated
 - May need to alter the class hierarchy w.r.t CIDFont to facilitate this, as
 CIDFont isn't really a PDFont - it's parent Type0 font is responsible for its
 CMap. We'll see.
 Phase 3
 - Refactor the decoding of character codes by PDFont and its subclasses, this
 will involve replacing the #getCodeFromArray, #encode and #encodeToCID
 methods.
 - Fix decoding of content stream character codes in PDFStreamEngine, using
 the newly refactored PDFont and using the current font's CMap to determine
 the code width.
 Phase 4
 - Add support for generating embedded TTFs with Unicode

--
This message was sent by Atlassian JIRA
(v6.2#6252)

[jira] [Comment Edited] (PDFBOX-2149) Font Refactoring

2014-06-18

Thread
John Hewson (JIRA)

[
https://issues.apache.org/jira/browse/PDFBOX-2149?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanelfocusedCommentId=14036824#comment-14036824
]

John Hewson edited comment on PDFBOX-2149 at 6/19/14 2:00 AM:
--

Thanks for spotting that, I've fixed this in
[r1603698|http://svn.apache.org/r1603698]. It was a tricky bug, the Signature
not verified text is inside a visual signature annotation which is rendered
after clear() has been called on the page's resources, which was clearing the
cmap cache in PDTrueTypeFont.

was (Author: jahewson):
Thanks for spotting this, I've fixed this in
[r1603698|http://svn.apache.org/r1603698]. It was a tricky bug, the Signature
not verified text is inside a visual signature annotation which is rendered
after clear() has been called on the pages resources, which was clearing the
cmap cache in PDTrueTypeFont.

 Font Refactoring

 Key: PDFBOX-2149
 URL: https://issues.apache.org/jira/browse/PDFBOX-2149
 Project: PDFBox
 Issue Type: Improvement
 Components: FontBox, PDModel
Affects Versions: 2.0.0
Reporter: John Hewson

 To fix bugs such as PDFBOX-2140 and to enable Unicode TTF embedding we need
 to sort out long-standing font/text encoding issues. The main issue is that
 encoding is done in an ad-hoc manner, sometimes in the PDFont subclasses,
 sometimes elsewhere. For example TTFGlyph2D does its own decoding, and this
 code is copy pasted into PDTrueTypeFont. Likewise, PDFont handles CMaps and
 Encodings despite the fact that these two encoding methods are mutually
 exclusive. The end result is that the process of reading Encodings/CMaps is
 often following rules which are completely invalid for that font type but
 mostly work by luck.
 Phase 1
 - Refactor PDFont subclasses to remove setXXX methods which allow the object
 to be corrupted. Proper use of inheritance can remove all cases where public
 setXXX methods are used during font loading.
 - Clean up TTF loading and the loadTTF in anticipation of Unicode TTF
 embedding, FontBox's TrueTypeFont class is externally mutable via setXXX
 methods used only by TTFParser: these can be made package-private.
 - the Encoding class and EncodingManager could do with some cleaning up prior
 to further refactoring.
 - PDSimpleFont does not do anything, its functionality should be moved into
 its superclass, PDFont.
 - PDFont#determineEncoding() loads CMaps when only Encodings are applicable,
 and vice versa. Loading needs to be pushed down into the appropriate
 subclasses, as a starting point the relevant code should at least be copied
 into the relevant subclasses ready for further refactoring.
 - TTFGlyph2D does its own decoding of char codes, rather than using the
 font's #encode method (fair enough because #encode is broken) and there's a
 copy and pasted version of the same code in PDTrueTypeFont - we need to
 consolidate this code into PDTrueTypeFont where it belongs.
 Phase 2
 - Refactor loading of CMaps and Encodings from font dictionaries, this will
 involve changes to PDFont and its subclasses to delegate loading to
 subclasses where it can be properly encapsulated
 - May need to alter the class hierarchy w.r.t CIDFont to facilitate this, as
 CIDFont isn't really a PDFont - it's parent Type0 font is responsible for its
 CMap. We'll see.
 Phase 3
 - Refactor the decoding of character codes by PDFont and its subclasses, this
 will involve replacing the #getCodeFromArray, #encode and #encodeToCID
 methods.
 - Fix decoding of content stream character codes in PDFStreamEngine, using
 the newly refactored PDFont and using the current font's CMap to determine
 the code width.
 Phase 4
 - Add support for generating embedded TTFs with Unicode

--
This message was sent by Atlassian JIRA
(v6.2#6252)

Jenkins build is back to normal : PDFBox-trunk #1057

2014-06-18

Thread
Apache Jenkins Server

See https://builds.apache.org/job/PDFBox-trunk/1057/changes

Jenkins build is back to normal : PDFBox-trunk » Apache PDFBox tools #1057

2014-06-18

Thread
Apache Jenkins Server

See
https://builds.apache.org/job/PDFBox-trunk/org.apache.pdfbox$pdfbox-tools/1057/

[jira] [Created] (PDFBOX-2150) Add Travis CI configuration file

2014-06-18

Thread
John Hewson (JIRA)

John Hewson created PDFBOX-2150:

 Summary: Add Travis CI configuration file
 Key: PDFBOX-2150
 URL: https://issues.apache.org/jira/browse/PDFBOX-2150
 Project: PDFBox
 Issue Type: Improvement
Reporter: John Hewson
Priority: Minor

The Apache Foundation has a Travis CI account, by adding a .travis.yml
configuration file we can get continuous integration builds at
https://travis-ci.org/apache/pdfbox.

This should speed things up a bit when Jenkins isn't working or has a 10 minute
queue. Obviously the Jenkins build is what counts, but Travis CI gives us a way
to get faster notice of failures.

--
This message was sent by Atlassian JIRA
(v6.2#6252)

[jira] [Commented] (PDFBOX-2150) Add Travis CI configuration file

2014-06-18

Thread
John Hewson (JIRA)

[
https://issues.apache.org/jira/browse/PDFBOX-2150?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanelfocusedCommentId=14036862#comment-14036862
]

John Hewson commented on PDFBOX-2150:
-

Ok, now I have to find whoever is the admin of our Travis CI account to enable
this build...

 Add Travis CI configuration file

 Key: PDFBOX-2150
 URL: https://issues.apache.org/jira/browse/PDFBOX-2150
 Project: PDFBox
 Issue Type: Improvement
Reporter: John Hewson
Priority: Minor

 The Apache Foundation has a Travis CI account, by adding a .travis.yml
 configuration file we can get continuous integration builds at
 https://travis-ci.org/apache/pdfbox.
 This should speed things up a bit when Jenkins isn't working or has a 10
 minute queue. Obviously the Jenkins build is what counts, but Travis CI gives
 us a way to get faster notice of failures.

--
This message was sent by Atlassian JIRA
(v6.2#6252)

[jira] [Comment Edited] (PDFBOX-2150) Add Travis CI configuration file

2014-06-18

Thread
John Hewson (JIRA)

[
https://issues.apache.org/jira/browse/PDFBOX-2150?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanelfocusedCommentId=14036862#comment-14036862
]

John Hewson edited comment on PDFBOX-2150 at 6/19/14 2:33 AM:
--

Ok, now I have to find whoever is the admin of our Travis CI account to enable
this build...

Update: found them, waiting on INFRA-7922

was (Author: jahewson):
Ok, now I have to find whoever is the admin of our Travis CI account to enable
this build...

Update: waiting on INFRA-7922

 Add Travis CI configuration file

 Key: PDFBOX-2150
 URL: https://issues.apache.org/jira/browse/PDFBOX-2150
 Project: PDFBox
 Issue Type: Improvement
Reporter: John Hewson
Priority: Minor

 The Apache Foundation has a Travis CI account, by adding a .travis.yml
 configuration file we can get continuous integration builds at
 https://travis-ci.org/apache/pdfbox.
 This should speed things up a bit when Jenkins isn't working or has a 10
 minute queue. Obviously the Jenkins build is what counts, but Travis CI gives
 us a way to get faster notice of failures.

--
This message was sent by Atlassian JIRA
(v6.2#6252)

[jira] [Commented] (PDFBOX-2149) Font Refactoring

2014-06-18

Thread
Tilman Hausherr (JIRA)

[
https://issues.apache.org/jira/browse/PDFBOX-2149?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanelfocusedCommentId=14036963#comment-14036963
]

Tilman Hausherr commented on PDFBOX-2149:
-

Thanks, PDFBOX-1452 is now good, PDFBOX-1283 no longer has an NPE, but the
rendering looks terrible.

 Font Refactoring

 Key: PDFBOX-2149
 URL: https://issues.apache.org/jira/browse/PDFBOX-2149
 Project: PDFBox
 Issue Type: Improvement
 Components: FontBox, PDModel
Affects Versions: 2.0.0
Reporter: John Hewson

 To fix bugs such as PDFBOX-2140 and to enable Unicode TTF embedding we need
 to sort out long-standing font/text encoding issues. The main issue is that
 encoding is done in an ad-hoc manner, sometimes in the PDFont subclasses,
 sometimes elsewhere. For example TTFGlyph2D does its own decoding, and this
 code is copy pasted into PDTrueTypeFont. Likewise, PDFont handles CMaps and
 Encodings despite the fact that these two encoding methods are mutually
 exclusive. The end result is that the process of reading Encodings/CMaps is
 often following rules which are completely invalid for that font type but
 mostly work by luck.
 Phase 1
 - Refactor PDFont subclasses to remove setXXX methods which allow the object
 to be corrupted. Proper use of inheritance can remove all cases where public
 setXXX methods are used during font loading.
 - Clean up TTF loading and the loadTTF in anticipation of Unicode TTF
 embedding, FontBox's TrueTypeFont class is externally mutable via setXXX
 methods used only by TTFParser: these can be made package-private.
 - the Encoding class and EncodingManager could do with some cleaning up prior
 to further refactoring.
 - PDSimpleFont does not do anything, its functionality should be moved into
 its superclass, PDFont.
 - PDFont#determineEncoding() loads CMaps when only Encodings are applicable,
 and vice versa. Loading needs to be pushed down into the appropriate
 subclasses, as a starting point the relevant code should at least be copied
 into the relevant subclasses ready for further refactoring.
 - TTFGlyph2D does its own decoding of char codes, rather than using the
 font's #encode method (fair enough because #encode is broken) and there's a
 copy and pasted version of the same code in PDTrueTypeFont - we need to
 consolidate this code into PDTrueTypeFont where it belongs.
 Phase 2
 - Refactor loading of CMaps and Encodings from font dictionaries, this will
 involve changes to PDFont and its subclasses to delegate loading to
 subclasses where it can be properly encapsulated
 - May need to alter the class hierarchy w.r.t CIDFont to facilitate this, as
 CIDFont isn't really a PDFont - it's parent Type0 font is responsible for its
 CMap. We'll see.
 Phase 3
 - Refactor the decoding of character codes by PDFont and its subclasses, this
 will involve replacing the #getCodeFromArray, #encode and #encodeToCID
 methods.
 - Fix decoding of content stream character codes in PDFStreamEngine, using
 the newly refactored PDFont and using the current font's CMap to determine
 the code width.
 Phase 4
 - Add support for generating embedded TTFs with Unicode

--
This message was sent by Atlassian JIRA
(v6.2#6252)

[jira] [Comment Edited] (PDFBOX-2149) Font Refactoring

2014-06-18

Thread
Tilman Hausherr (JIRA)

[
https://issues.apache.org/jira/browse/PDFBOX-2149?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanelfocusedCommentId=14036963#comment-14036963
]

Tilman Hausherr edited comment on PDFBOX-2149 at 6/19/14 4:58 AM:
--

Thanks, PDFBOX-1452 is now good, PDFBOX-1283 no longer has an NPE, but the
rendering is incorrect.

was (Author: tilman):
Thanks, PDFBOX-1452 is now good, PDFBOX-1283 no longer has an NPE, but the
rendering looks terrible.

 Font Refactoring

 Key: PDFBOX-2149
 URL: https://issues.apache.org/jira/browse/PDFBOX-2149
 Project: PDFBox
 Issue Type: Improvement
 Components: FontBox, PDModel
Affects Versions: 2.0.0
Reporter: John Hewson

 To fix bugs such as PDFBOX-2140 and to enable Unicode TTF embedding we need
 to sort out long-standing font/text encoding issues. The main issue is that
 encoding is done in an ad-hoc manner, sometimes in the PDFont subclasses,
 sometimes elsewhere. For example TTFGlyph2D does its own decoding, and this
 code is copy pasted into PDTrueTypeFont. Likewise, PDFont handles CMaps and
 Encodings despite the fact that these two encoding methods are mutually
 exclusive. The end result is that the process of reading Encodings/CMaps is
 often following rules which are completely invalid for that font type but
 mostly work by luck.
 Phase 1
 - Refactor PDFont subclasses to remove setXXX methods which allow the object
 to be corrupted. Proper use of inheritance can remove all cases where public
 setXXX methods are used during font loading.
 - Clean up TTF loading and the loadTTF in anticipation of Unicode TTF
 embedding, FontBox's TrueTypeFont class is externally mutable via setXXX
 methods used only by TTFParser: these can be made package-private.
 - the Encoding class and EncodingManager could do with some cleaning up prior
 to further refactoring.
 - PDSimpleFont does not do anything, its functionality should be moved into
 its superclass, PDFont.
 - PDFont#determineEncoding() loads CMaps when only Encodings are applicable,
 and vice versa. Loading needs to be pushed down into the appropriate
 subclasses, as a starting point the relevant code should at least be copied
 into the relevant subclasses ready for further refactoring.
 - TTFGlyph2D does its own decoding of char codes, rather than using the
 font's #encode method (fair enough because #encode is broken) and there's a
 copy and pasted version of the same code in PDTrueTypeFont - we need to
 consolidate this code into PDTrueTypeFont where it belongs.
 Phase 2
 - Refactor loading of CMaps and Encodings from font dictionaries, this will
 involve changes to PDFont and its subclasses to delegate loading to
 subclasses where it can be properly encapsulated
 - May need to alter the class hierarchy w.r.t CIDFont to facilitate this, as
 CIDFont isn't really a PDFont - it's parent Type0 font is responsible for its
 CMap. We'll see.
 Phase 3
 - Refactor the decoding of character codes by PDFont and its subclasses, this
 will involve replacing the #getCodeFromArray, #encode and #encodeToCID
 methods.
 - Fix decoding of content stream character codes in PDFStreamEngine, using
 the newly refactored PDFont and using the current font's CMap to determine
 the code width.
 Phase 4
 - Add support for generating embedded TTFs with Unicode

--
This message was sent by Atlassian JIRA
(v6.2#6252)

[jira] [Commented] (PDFBOX-2151) Replace log4j with commons logging

2014-06-18

Thread
Tilman Hausherr (JIRA)

[
https://issues.apache.org/jira/browse/PDFBOX-2151?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanelfocusedCommentId=14036997#comment-14036997
]

Tilman Hausherr commented on PDFBOX-2151:
-

Done in rev 1603718 for the trunk. Will do 1.8 later.

 Replace log4j with commons logging
 --

 Key: PDFBOX-2151
 URL: https://issues.apache.org/jira/browse/PDFBOX-2151
 Project: PDFBox
 Issue Type: Improvement
 Components: Preflight
Reporter: Tilman Hausherr
Assignee: Tilman Hausherr
Priority: Minor

 Suggested by Simon Steiner on the dev list: Should pdfbox move few bits of
 log4j to commons logging?

--
This message was sent by Atlassian JIRA
(v6.2#6252)

 69 matches

	Advanced search

Search the list

 Site Navigation

 	The Mail Archive home
	
 dev - all messages
	
 dev - about the list
	Expand

 				Mail list logo

	 	 Footer information

 	The Mail Archive home
	Add your mailing list
	FAQ
	Support
	Privacy

