

Re: [PDFBOX-1398] best way to fix this issue ?

2013-02-09

Thread
Leleu Eric

Thanks Andreas,

I fixed this issue following your advice.

BR,
Eric

2013/1/29 Andreas Lehmkühler andr...@lehmi.de

 Hi,

 Am 28.01.13 23:06, schrieb Leleu Eric:

 Hi,

 I'm currently working on the PDFBOX-1398 [1] issue.
 An ArrayOutOfBound Exception is thrown on TrueType font file parsing. (A
 embedded fontfile in the CIDType2Font dictionary)

 The problem comes from the glyphIdToCharacterCode array that haven't the
 right size in the processSubtype4 method.
 (This array is initialized with new int[numGlyphs] where numGlyphs
 contains the number of glyph present in the MaxProfile table of the Font)

 At the beginning, I thought that the font was damaged, but in the TrueType
 Font specification [2] there is this comment for the glyphIdArray
 description in the SubType4 for the CMap table : Glyph index array
 (arbitrary length)

 Does that mean the GlyphIdArray doesn't have a size based on the number of
 declared glyphs in the MaxProfile table and can have some glyph
 identifiers
 that will be mapped on the .notdef glyph if this index is used ?

 AFAIU the spec that assumption is correct.

 In other words, can we extend the glyphIdToCharacterCode if the computed
 glyph index is bigger than the length of array (see example here after) ?
 I
 didn't see any error on variables initialization in this method that could
 explain a wrong size of array and the extracted font stream seems to be a
 valid font when I open it with FontForge.

 int glyphid = (j+delta)%65536;
 if (glyphid = glyphIdToCharacterCode.length) {
 glyphIdToCharacterCode =
 Arrays.copyOf(**glyphIdToCharacterCode, glyphid+1);
 }
 glyphIdToCharacterCode[glyphid]=j;
 characterCodeToGlyphId.put(j, glyphid);

 An other possibility is throwing an explicit RuntimeException specifying
 that the number of glyph inside the FontFile is inconsistent.

 What is your opinion?

 How about using HashMap to temporarily store the glyph mapping? At the
 end you are able to determine the correct size of the array (max glyph
 id). It can be initialized using the .nodef character and be filled
 with the mappings calculated before. The result should be an array with
 several ranges of glyph mappings divided by one or more .notdef
 characters.

 BR,
 Eric

 [1]
 https://issues.apache.org/**jira/browse/PDFBOX-1398https://issues.apache.org/jira/browse/PDFBOX-1398
 [2]
 http://www.microsoft.com/**typography/otspec/cmap.htmhttp://www.microsoft.com/typography/otspec/cmap.htm

 BR
 Andreas Lehmkühler

Re: [PDFBOX-1398] best way to fix this issue ?

2013-01-29

Thread
Andreas Lehmkühler

Hi,

Am 28.01.13 23:06, schrieb Leleu Eric:

Hi,

I'm currently working on the PDFBOX-1398 [1] issue.
An ArrayOutOfBound Exception is thrown on TrueType font file parsing. (A
embedded fontfile in the CIDType2Font dictionary)

The problem comes from the glyphIdToCharacterCode array that haven't the
right size in the processSubtype4 method.
(This array is initialized with new int[numGlyphs] where numGlyphs
contains the number of glyph present in the MaxProfile table of the Font)

At the beginning, I thought that the font was damaged, but in the TrueType
Font specification [2] there is this comment for the glyphIdArray
description in the SubType4 for the CMap table : Glyph index array
(arbitrary length)

Does that mean the GlyphIdArray doesn't have a size based on the number of
declared glyphs in the MaxProfile table and can have some glyph identifiers
that will be mapped on the .notdef glyph if this index is used ?

AFAIU the spec that assumption is correct.

In other words, can we extend the glyphIdToCharacterCode if the computed
glyph index is bigger than the length of array (see example here after) ? I
didn't see any error on variables initialization in this method that could
explain a wrong size of array and the extracted font stream seems to be a
valid font when I open it with FontForge.

 int glyphid = (j+delta)%65536;
 if (glyphid = glyphIdToCharacterCode.length) {
 glyphIdToCharacterCode =
Arrays.copyOf(glyphIdToCharacterCode, glyphid+1);
 }
 glyphIdToCharacterCode[glyphid]=j;
 characterCodeToGlyphId.put(j, glyphid);

An other possibility is throwing an explicit RuntimeException specifying
that the number of glyph inside the FontFile is inconsistent.

What is your opinion?

How about using HashMap to temporarily store the glyph mapping? At the
end you are able to determine the correct size of the array (max glyph
id). It can be initialized using the .nodef character and be filled
with the mappings calculated before. The result should be an array with
several ranges of glyph mappings divided by one or more .notdef
characters.

BR,
Eric

[1] https://issues.apache.org/jira/browse/PDFBOX-1398
[2] http://www.microsoft.com/typography/otspec/cmap.htm

BR
Andreas Lehmkühler

[PDFBOX-1398] best way to fix this issue ?

2013-01-28

Thread
Leleu Eric

Hi,

I'm currently working on the PDFBOX-1398 [1] issue.
An ArrayOutOfBound Exception is thrown on TrueType font file parsing. (A
embedded fontfile in the CIDType2Font dictionary)

The problem comes from the glyphIdToCharacterCode array that haven't the
right size in the processSubtype4 method.
(This array is initialized with new int[numGlyphs] where numGlyphs
contains the number of glyph present in the MaxProfile table of the Font)

At the beginning, I thought that the font was damaged, but in the TrueType
Font specification [2] there is this comment for the glyphIdArray
description in the SubType4 for the CMap table : Glyph index array
(arbitrary length)

Does that mean the GlyphIdArray doesn't have a size based on the number of
declared glyphs in the MaxProfile table and can have some glyph identifiers
that will be mapped on the .notdef glyph if this index is used ?

In other words, can we extend the glyphIdToCharacterCode if the computed
glyph index is bigger than the length of array (see example here after) ? I
didn't see any error on variables initialization in this method that could
explain a wrong size of array and the extracted font stream seems to be a
valid font when I open it with FontForge.

int glyphid = (j+delta)%65536;
if (glyphid = glyphIdToCharacterCode.length) {
glyphIdToCharacterCode =
Arrays.copyOf(glyphIdToCharacterCode, glyphid+1);
}
glyphIdToCharacterCode[glyphid]=j;
characterCodeToGlyphId.put(j, glyphid);

An other possibility is throwing an explicit RuntimeException specifying
that the number of glyph inside the FontFile is inconsistent.

What is your opinion?

BR,
Eric

[1] https://issues.apache.org/jira/browse/PDFBOX-1398
[2] http://www.microsoft.com/typography/otspec/cmap.htm

 3 matches

	Advanced search

Search the list

 Site Navigation

 	The Mail Archive home
	
 dev - all messages
	
 dev - about the list
	Expand

 				Mail list logo

	 	 Footer information

 	The Mail Archive home
	Add your mailing list
	FAQ
	Support
	Privacy

