

Re: Custom TextStripper / PDGraphicsState Not Reading Color

2014-09-17

Thread
John Hewson

Hi All

Just to follow up on this thread, I haven’t yet removed the .properties
functionality.

However, it has now become not just desirable but necessary, as PDFBOX-2358 has
shown that PDFBox is not handling resource loading in an OSGI compatible manner.

Basically, a class shouldn’t load resources from other packages, which means
that the mechanism for overloading operators via .properties isn’t safe in
subclasses. The PrintImageLocations in the “examples” package breaks this rule
with the following code:

public PrintImageLocations() throws IOException
{
super(ResourceLoader.loadProperties(
org/apache/pdfbox/resources/PDFTextStripper.properties, true));
}

Because it’s loading resources in the “pdfbox” package. What this also means is
that nobody can subclass the built-in PDFBox classes and safely load the
built-in PDFBox .properties.

I’m going to migrate the .properties to the existing
registerOperatorProcessor() mechanism.

-- John

On 30 Jul 2014, at 10:10, John Hewson j...@jahewson.com wrote:

 On 29 Jul 2014, at 23:12, Maruan Sahyoun sahy...@fileaffairs.de wrote:

 +1 for removing the .properties file if the new mechanism is easier to
 understand and handle. The discussion doesn’t provide that proof or some
 information about that.

 How would a replacement look like?

 Basically like registerOperatorProcessor(), as used in PreflightStreamEngine.

 OTOH if it’s a documentation issue we could also add some more information
 to the javadocs to explain the dependencies.

 We could add a register/unregister method to allow to add/remove custom
 operator handling or provide a service discovery mechanism. This way we
 still have the old flexibility.

 As Andreas notes, there’s a registerOperatorProcessor method which does this,
 so the mechanism is already in place. The problem is not that we don’t have
 the mechanism, it’s that we’re using .properties files at all. The list of
 operator’s can’t be controlled from both code and from .properties lists, one
 source has to be authoritative - otherwise we’d end up with a situation where
 we have an operator disabled in a .properties file and then re-enabled in
 code. Currently we have a situation where that could happen.

 Therefore, removing the .properties is the only workable solution. It’s
 important to note that it’s very, very unlikely that anybody is using the
 .properties files in a use-case where they are not also making some code
 changes, so the supposed benefit of “not having to recompile” never existed.
 Adding an operator would always require compile-time changes to PDFBox so
 that the PDFStreamEngine subclasses actually does something with the new
 operator.

 -- John

 BR
 Maruan

 Am 29.07.2014 um 21:48 schrieb John Hewson j...@jahewson.com:

 Right but we need to address the confusion and complexity that has been
 caused by .properties files which made PDFBOX-2246 so tricky to figure out.

 Lets remove this wart!

 -- John

 On 29 Jul 2014, at 10:44, Tilman Hausherr thaush...@t-online.de wrote:

 Hi,

 At this time, the problem I see and wanted to solve (PDFBOX-2246) exists
 regardless whether we use a properties file or initialize directly in the
 code.

 Tilman

 Am 29.07.2014 19:41, schrieb John Hewson:
 On 29 Jul 2014, at 03:44, Andreas Lehmkühler andr...@lehmi.de wrote:

 Hi,

 it's not a black and white issue (comments inline)

 John Hewson j...@jahewson.com hat am 29. Juli 2014 um 07:44
 geschrieben:

 Yes, really I should have said subclasses of PDFStreamEngine - that's
 where
 the .properties file originates. I'd propose replacing the properties
 mechanism with a simple method containing the mapping which can be
 overridden
 in subclasses. Ultimately, users expect to be able to subclass the
 behaviour
 of a class by just subclassing the class.
 PDFStreamEngine doesn't configure any operator set itself. The
 subclasses are
 supposed to configure their own set of operators depending on the
 particular
 usecase. E.g. to extend the text extraction one has to subclass
 PDFTextStripper
 and so on.
 It’s PDFStreamEngine which implements the .property mechanism though, via
 the
 PDFStreamEngine(Properties properties) constructor.

 E.g. to extend the text extraction one has to subclass PDFTextStripper
 and so on.
 That’s true, but it’s only half the story, don’t forget that the
 .properties files need
 to be copied and pasted elsewhere and modified along with overriding
 which .property
 file is passed in the constructor if you want to truly override the
 class’ behaviour.

 We've seen a number of incidents of confusion on the mailing list due
 to the
 current design.
 IMHO, most of the confusion is based on the lack of knowledge of the pdf
 spec.
 One can't understand how pdfbox works under the hood by simply looking
 at the
 code. One has to understand the pdf spec as well, at least the base
 concepts.
 I’m specifically talking about

Re: Custom TextStripper / PDGraphicsState Not Reading Color

2014-07-31

Thread
-A

Hello;

I am just going to jump in and ask about the following warning when used
with the default PDFTextStripper class:

WARNING: Count in xref table is 0 at offset 96825

Attached is the causing document. I thought it may have to do with the
Properties file that Tillman Hausherr pointed out to me, but didn't.

This isn't a big issue as the program still functions, but if I could get
rid of the warning so I don't have to look at it - more the merrier!

Also getting to the PDF spec. If there is anything I could assist with if
the properties file becomes an active issue (even just testing), let me
know.

Thanks,
-Aaron

On Wed, Jul 30, 2014 at 11:10 AM, John Hewson j...@jahewson.com wrote:

 On 29 Jul 2014, at 23:12, Maruan Sahyoun sahy...@fileaffairs.de wrote:

 +1 for removing the .properties file if the new mechanism is easier to
 understand and handle. The discussion doesn’t provide that proof or some
 information about that.

 How would a replacement look like?

 Basically like registerOperatorProcessor(), as used in
 PreflightStreamEngine.

 OTOH if it’s a documentation issue we could also add some more
 information to the javadocs to explain the dependencies.

 We could add a register/unregister method to allow to add/remove custom
 operator handling or provide a service discovery mechanism. This way we
 still have the old flexibility.

 As Andreas notes, there’s a registerOperatorProcessor method which does
 this, so the mechanism is already in place. The problem is not that we
 don’t have the mechanism, it’s that we’re using .properties files at all.
 The list of operator’s can’t be controlled from both code and from
 .properties lists, one source has to be authoritative - otherwise we’d end
 up with a situation where we have an operator disabled in a .properties
 file and then re-enabled in code. Currently we have a situation where that
 could happen.

 Therefore, removing the .properties is the only workable solution. It’s
 important to note that it’s very, very unlikely that anybody is using the
 .properties files in a use-case where they are not also making some code
 changes, so the supposed benefit of “not having to recompile” never
 existed. Adding an operator would always require compile-time changes to
 PDFBox so that the PDFStreamEngine subclasses actually does something with
 the new operator.

 -- John

 BR
 Maruan

 Am 29.07.2014 um 21:48 schrieb John Hewson j...@jahewson.com:

 Right but we need to address the confusion and complexity that has been
 caused by .properties files which made PDFBOX-2246 so tricky to figure out.

 Lets remove this wart!

 -- John

 On 29 Jul 2014, at 10:44, Tilman Hausherr thaush...@t-online.de
 wrote:

 Hi,

 At this time, the problem I see and wanted to solve (PDFBOX-2246)
 exists regardless whether we use a properties file or initialize directly
 in the code.

 Tilman

 Am 29.07.2014 19:41, schrieb John Hewson:
 On 29 Jul 2014, at 03:44, Andreas Lehmkühler andr...@lehmi.de
 wrote:

 Hi,

 it's not a black and white issue (comments inline)

 John Hewson j...@jahewson.com hat am 29. Juli 2014 um 07:44
 geschrieben:

 Yes, really I should have said subclasses of PDFStreamEngine -
 that's where
 the .properties file originates. I'd propose replacing the
 properties
 mechanism with a simple method containing the mapping which can be
 overridden
 in subclasses. Ultimately, users expect to be able to subclass the
 behaviour
 of a class by just subclassing the class.
 PDFStreamEngine doesn't configure any operator set itself. The
 subclasses are
 supposed to configure their own set of operators depending on the
 particular
 usecase. E.g. to extend the text extraction one has to subclass
 PDFTextStripper
 and so on.
 It’s PDFStreamEngine which implements the .property mechanism though,
 via the
 PDFStreamEngine(Properties properties) constructor.

 E.g. to extend the text extraction one has to subclass
 PDFTextStripper and so on.
 That’s true, but it’s only half the story, don’t forget that the
 .properties files need
 to be copied and pasted elsewhere and modified along with overriding
 which .property
 file is passed in the constructor if you want to truly override the
 class’ behaviour.

 We've seen a number of incidents of confusion on the mailing list
 due to the
 current design.
 IMHO, most of the confusion is based on the lack of knowledge of the
 pdf spec.
 One can't understand how pdfbox works under the hood by simply
 looking at the
 code. One has to understand the pdf spec as well, at least the base
 concepts.
 I’m specifically talking about confusion surrounding how to override
 operators, and
 .properties files, this has come up before. This entire thread has
 been caused by
 PDFBox’s design and *not* the PDF spec.

 I'd say that to the modern Java developer having non-code runtime
 binding has
 become an anti-pattern, resulting in brittle code which can't
 easily be

Re: Custom TextStripper / PDGraphicsState Not Reading Color

2014-07-30

Thread
Maruan Sahyoun

+1 for removing the .properties file if the new mechanism is easier to
understand and handle. The discussion doesn’t provide that proof or some
information about that.

How would a replacement look like?

OTOH if it’s a documentation issue we could also add some more information to
the javadocs to explain the dependencies.

We could add a register/unregister method to allow to add/remove custom
operator handling or provide a service discovery mechanism. This way we still
have the old flexibility.

BR
Maruan

Am 29.07.2014 um 21:48 schrieb John Hewson j...@jahewson.com:

 Right but we need to address the confusion and complexity that has been
 caused by .properties files which made PDFBOX-2246 so tricky to figure out.

 Lets remove this wart!

 -- John

 On 29 Jul 2014, at 10:44, Tilman Hausherr thaush...@t-online.de wrote:

 Hi,

 At this time, the problem I see and wanted to solve (PDFBOX-2246) exists
 regardless whether we use a properties file or initialize directly in the
 code.

 Tilman

 Am 29.07.2014 19:41, schrieb John Hewson:
 On 29 Jul 2014, at 03:44, Andreas Lehmkühler andr...@lehmi.de wrote:

 Hi,

 it's not a black and white issue (comments inline)

 John Hewson j...@jahewson.com hat am 29. Juli 2014 um 07:44 geschrieben:

 Yes, really I should have said subclasses of PDFStreamEngine - that's
 where
 the .properties file originates. I'd propose replacing the properties
 mechanism with a simple method containing the mapping which can be
 overridden
 in subclasses. Ultimately, users expect to be able to subclass the
 behaviour
 of a class by just subclassing the class.
 PDFStreamEngine doesn't configure any operator set itself. The subclasses
 are
 supposed to configure their own set of operators depending on the
 particular
 usecase. E.g. to extend the text extraction one has to subclass
 PDFTextStripper
 and so on.
 It’s PDFStreamEngine which implements the .property mechanism though, via
 the
 PDFStreamEngine(Properties properties) constructor.

 E.g. to extend the text extraction one has to subclass PDFTextStripper and
 so on.
 That’s true, but it’s only half the story, don’t forget that the
 .properties files need
 to be copied and pasted elsewhere and modified along with overriding which
 .property
 file is passed in the constructor if you want to truly override the class’
 behaviour.

 We've seen a number of incidents of confusion on the mailing list due to
 the
 current design.
 IMHO, most of the confusion is based on the lack of knowledge of the pdf
 spec.
 One can't understand how pdfbox works under the hood by simply looking at
 the
 code. One has to understand the pdf spec as well, at least the base
 concepts.
 I’m specifically talking about confusion surrounding how to override
 operators, and
 .properties files, this has come up before. This entire thread has been
 caused by
 PDFBox’s design and *not* the PDF spec.

 I'd say that to the modern Java developer having non-code runtime binding
 has
 become an anti-pattern, resulting in brittle code which can't easily be
 navigated in an IDE and which resists automated analysis and exhibits
 runtime
 failures despite compiling ok. This is one of those cases where the
 collective
 wisdom has just evolved over the years.
 It depends on the given usecase. All solutions have advantages and
 disadvantages. E.g. if someone wants to configure the PDFTextStripper
 without
 recompiling the code, it is quite handy to keep the configuration in a text
 file.
 Has anybody *ever* wanted to change the operators which PDFTextStripper is
 processing without recompiling the code? These are internal implementation
 details that shouldn’t be exposed in the first place - it’s not a
 “configuration” at
 all, especially as 99% of possible changes would just break PDFTextStripper.

 In this case I'm neither pro or con a text based config, but I tend to
 agree
 with John to have the different configurations in some method within the
 subclasses of PDFStreamEngine.
 As above, this isn’t “configuration” at all, it lacks even a basic use
 case. I don’t
 see any pros which aren’t fabricated for the sake of argument, but the cons
 are
 causing us significant problems right here, right now.

 BR
 Andreas Lehmkühler

 -- John

 On 28 Jul 2014, at 13:42, Tilman Hausherr thaush...@t-online.de wrote:

 I disagree - one doesn't *have* to pass a property file to
 PDFTextStripper
 and PageDrawer. The properties file for PDFTextStripper is optional. The
 property parameter was already there before it became an apache project.

 Tilman

 Am 28.07.2014 22:08, schrieb John Hewson:
 We need to get rid of these .properties files, they’re causing endless
 confusion, not to mention that they hide runtime dependencies in text
 files.

 We should make it so that overriding a TextStripper, PageDrawer, etc.
 doesn’t require external .properties files, currently Preflight works in
 this manner and it’s much clearer.

Re: Custom TextStripper / PDGraphicsState Not Reading Color

2014-07-30

Thread
Andreas Lehmkühler

 Maruan Sahyoun sahy...@fileaffairs.de hat am 30. Juli 2014 um 08:12
 geschrieben:

 +1 for removing the .properties file if the new mechanism is easier to
 understand and handle. The discussion doesn’t provide that proof or some
 information about that.

 How would a replacement look like?

 OTOH if it’s a documentation issue we could also add some more information to
 the javadocs to explain the dependencies.

 We could add a register/unregister method to allow to add/remove custom
 operator handling or provide a service discovery mechanism. This way we still
 have the old flexibility.
There is already the method registerOperatorProcessor in PDFStreamEngine to
register operators. In most cases it's called when processing the property file.
In the case of preflight (see PreflightStreamEngine) those register calls are
done directly within the constructor. There isn't any unregister method.

BR
Andreas Lehmkühler

 BR
 Maruan

 Am 29.07.2014 um 21:48 schrieb John Hewson j...@jahewson.com:

 Right but we need to address the confusion and complexity that has been
 caused by .properties files which made PDFBOX-2246 so tricky to figure out.

 Lets remove this wart!

 -- John

 On 29 Jul 2014, at 10:44, Tilman Hausherr thaush...@t-online.de wrote:

 Hi,

 At this time, the problem I see and wanted to solve (PDFBOX-2246) exists
 regardless whether we use a properties file or initialize directly in the
 code.

 Tilman

 Am 29.07.2014 19:41, schrieb John Hewson:
 On 29 Jul 2014, at 03:44, Andreas Lehmkühler andr...@lehmi.de wrote:

 Hi,

 it's not a black and white issue (comments inline)

 John Hewson j...@jahewson.com hat am 29. Juli 2014 um 07:44
 geschrieben:

 Yes, really I should have said subclasses of PDFStreamEngine - that's
 where
 the .properties file originates. I'd propose replacing the properties
 mechanism with a simple method containing the mapping which can be
 overridden
 in subclasses. Ultimately, users expect to be able to subclass the
 behaviour
 of a class by just subclassing the class.
 PDFStreamEngine doesn't configure any operator set itself. The subclasses
 are
 supposed to configure their own set of operators depending on the
 particular
 usecase. E.g. to extend the text extraction one has to subclass
 PDFTextStripper
 and so on.
 It’s PDFStreamEngine which implements the .property mechanism though, via
 the
 PDFStreamEngine(Properties properties) constructor.

 E.g. to extend the text extraction one has to subclass PDFTextStripper
 and so on.
 That’s true, but it’s only half the story, don’t forget that the
 .properties files need
 to be copied and pasted elsewhere and modified along with overriding which
 .property
 file is passed in the constructor if you want to truly override the class’
 behaviour.

 We've seen a number of incidents of confusion on the mailing list due to
 the
 current design.
 IMHO, most of the confusion is based on the lack of knowledge of the pdf
 spec.
 One can't understand how pdfbox works under the hood by simply looking at
 the
 code. One has to understand the pdf spec as well, at least the base
 concepts.
 I’m specifically talking about confusion surrounding how to override
 operators, and
 .properties files, this has come up before. This entire thread has been
 caused by
 PDFBox’s design and *not* the PDF spec.

 I'd say that to the modern Java developer having non-code runtime
 binding has
 become an anti-pattern, resulting in brittle code which can't easily be
 navigated in an IDE and which resists automated analysis and exhibits
 runtime
 failures despite compiling ok. This is one of those cases where the
 collective
 wisdom has just evolved over the years.
 It depends on the given usecase. All solutions have advantages and
 disadvantages. E.g. if someone wants to configure the PDFTextStripper
 without
 recompiling the code, it is quite handy to keep the configuration in a
 text
 file.
 Has anybody *ever* wanted to change the operators which PDFTextStripper is
 processing without recompiling the code? These are internal implementation
 details that shouldn’t be exposed in the first place - it’s not a
 “configuration” at
 all, especially as 99% of possible changes would just break
 PDFTextStripper.

 In this case I'm neither pro or con a text based config, but I tend to
 agree
 with John to have the different configurations in some method within the
 subclasses of PDFStreamEngine.
 As above, this isn’t “configuration” at all, it lacks even a basic use
 case. I don’t
 see any pros which aren’t fabricated for the sake of argument, but the
 cons are
 causing us significant problems right here, right now.

 BR
 Andreas Lehmkühler

 -- John

 On 28 Jul 2014, at 13:42, Tilman Hausherr thaush...@t-online.de
 wrote:

 I disagree - one doesn't *have* to pass a property file to
 PDFTextStripper
 and PageDrawer. The properties file for

Re: Custom TextStripper / PDGraphicsState Not Reading Color

2014-07-30

Thread
John Hewson

On 29 Jul 2014, at 23:12, Maruan Sahyoun sahy...@fileaffairs.de wrote:

 +1 for removing the .properties file if the new mechanism is easier to
 understand and handle. The discussion doesn’t provide that proof or some
 information about that.

 How would a replacement look like?

Basically like registerOperatorProcessor(), as used in PreflightStreamEngine.

 OTOH if it’s a documentation issue we could also add some more information to
 the javadocs to explain the dependencies.

 We could add a register/unregister method to allow to add/remove custom
 operator handling or provide a service discovery mechanism. This way we still
 have the old flexibility.

As Andreas notes, there’s a registerOperatorProcessor method which does this,
so the mechanism is already in place. The problem is not that we don’t have the
mechanism, it’s that we’re using .properties files at all. The list of
operator’s can’t be controlled from both code and from .properties lists, one
source has to be authoritative - otherwise we’d end up with a situation where
we have an operator disabled in a .properties file and then re-enabled in code.
Currently we have a situation where that could happen.

Therefore, removing the .properties is the only workable solution. It’s
important to note that it’s very, very unlikely that anybody is using the
.properties files in a use-case where they are not also making some code
changes, so the supposed benefit of “not having to recompile” never existed.
Adding an operator would always require compile-time changes to PDFBox so that
the PDFStreamEngine subclasses actually does something with the new operator.

-- John

 BR
 Maruan

 Am 29.07.2014 um 21:48 schrieb John Hewson j...@jahewson.com:

 Right but we need to address the confusion and complexity that has been
 caused by .properties files which made PDFBOX-2246 so tricky to figure out.

 Lets remove this wart!

 -- John

 On 29 Jul 2014, at 10:44, Tilman Hausherr thaush...@t-online.de wrote:

 Hi,

 At this time, the problem I see and wanted to solve (PDFBOX-2246) exists
 regardless whether we use a properties file or initialize directly in the
 code.

 Tilman

 Am 29.07.2014 19:41, schrieb John Hewson:
 On 29 Jul 2014, at 03:44, Andreas Lehmkühler andr...@lehmi.de wrote:

 Hi,

 it's not a black and white issue (comments inline)

 John Hewson j...@jahewson.com hat am 29. Juli 2014 um 07:44
 geschrieben:

 Yes, really I should have said subclasses of PDFStreamEngine - that's
 where
 the .properties file originates. I'd propose replacing the properties
 mechanism with a simple method containing the mapping which can be
 overridden
 in subclasses. Ultimately, users expect to be able to subclass the
 behaviour
 of a class by just subclassing the class.
 PDFStreamEngine doesn't configure any operator set itself. The subclasses
 are
 supposed to configure their own set of operators depending on the
 particular
 usecase. E.g. to extend the text extraction one has to subclass
 PDFTextStripper
 and so on.
 It’s PDFStreamEngine which implements the .property mechanism though, via
 the
 PDFStreamEngine(Properties properties) constructor.

 E.g. to extend the text extraction one has to subclass PDFTextStripper
 and so on.
 That’s true, but it’s only half the story, don’t forget that the
 .properties files need
 to be copied and pasted elsewhere and modified along with overriding which
 .property
 file is passed in the constructor if you want to truly override the class’
 behaviour.

 We've seen a number of incidents of confusion on the mailing list due to
 the
 current design.
 IMHO, most of the confusion is based on the lack of knowledge of the pdf
 spec.
 One can't understand how pdfbox works under the hood by simply looking at
 the
 code. One has to understand the pdf spec as well, at least the base
 concepts.
 I’m specifically talking about confusion surrounding how to override
 operators, and
 .properties files, this has come up before. This entire thread has been
 caused by
 PDFBox’s design and *not* the PDF spec.

 I'd say that to the modern Java developer having non-code runtime
 binding has
 become an anti-pattern, resulting in brittle code which can't easily be
 navigated in an IDE and which resists automated analysis and exhibits
 runtime
 failures despite compiling ok. This is one of those cases where the
 collective
 wisdom has just evolved over the years.
 It depends on the given usecase. All solutions have advantages and
 disadvantages. E.g. if someone wants to configure the PDFTextStripper
 without
 recompiling the code, it is quite handy to keep the configuration in a
 text
 file.
 Has anybody *ever* wanted to change the operators which PDFTextStripper is
 processing without recompiling the code? These are internal implementation
 details that shouldn’t be exposed in the first place - it’s not a
 “configuration” at
 all, especially as 99% of possible changes would just

Re: Custom TextStripper / PDGraphicsState Not Reading Color

2014-07-29

Thread
Andreas Lehmkühler

Hi,

it's not a black and white issue (comments inline)

 John Hewson j...@jahewson.com hat am 29. Juli 2014 um 07:44 geschrieben:

 Yes, really I should have said subclasses of PDFStreamEngine - that's where
 the .properties file originates. I'd propose replacing the properties
 mechanism with a simple method containing the mapping which can be overridden
 in subclasses. Ultimately, users expect to be able to subclass the behaviour
 of a class by just subclassing the class.
PDFStreamEngine doesn't configure any operator set itself. The subclasses are
supposed to configure their own set of operators depending on the particular
usecase. E.g. to extend the text extraction one has to subclass PDFTextStripper
and so on.

 We've seen a number of incidents of confusion on the mailing list due to the
 current design.
IMHO, most of the confusion is based on the lack of knowledge of the pdf spec.
One can't understand how pdfbox works under the hood by simply looking at the
code. One has to understand the pdf spec as well, at least the base concepts.

 I'd say that to the modern Java developer having non-code runtime binding has
 become an anti-pattern, resulting in brittle code which can't easily be
 navigated in an IDE and which resists automated analysis and exhibits runtime
 failures despite compiling ok. This is one of those cases where the collective
 wisdom has just evolved over the years.
It depends on the given usecase. All solutions have advantages and
disadvantages. E.g. if someone wants to configure the PDFTextStripper without
recompiling the code, it is quite handy to keep the configuration in a text
file.

In this case I'm neither pro or con a text based config, but I tend to agree
with John to have the different configurations in some method within the
subclasses of PDFStreamEngine.

BR
Andreas Lehmkühler

 -- John

 On 28 Jul 2014, at 13:42, Tilman Hausherr thaush...@t-online.de wrote:

 I disagree - one doesn't *have* to pass a property file to PDFTextStripper
 and PageDrawer. The properties file for PDFTextStripper is optional. The
 property parameter was already there before it became an apache project.

 Tilman

 Am 28.07.2014 22:08, schrieb John Hewson:
 We need to get rid of these .properties files, they’re causing endless
 confusion, not to mention that they hide runtime dependencies in text
 files.

 We should make it so that overriding a TextStripper, PageDrawer, etc.
 doesn’t require external .properties files, currently Preflight works in
 this manner and it’s much clearer.

 I guess this is a legacy of the “old” ways of Java XML everything.

 -- John

 On 27 Jul 2014, at 10:09, -A aa...@hrtmn.net wrote:

 Thank you, that works as promised and removes the warning. I'm still
 hoping
 to find a resource that better explains the pieces of PDFBox and how they
 work together. Unfortunately most posts on the internet are solely how and
 not why.

 Appreciate it!

 -Aaron

 On Sun, Jul 27, 2014 at 8:00 AM, Tilman Hausherr thaush...@t-online.de
 wrote:

 Hi,

 That didn't happen to me, but maybe it did happen to you with another
 file.

 Another solution would be to pass your own properties file, and it should
 have this content:

 ===
 # Licensed to the Apache Software Foundation (ASF) under one or more
 # contributor license agreements. See the NOTICE file distributed with
 # this work for additional information regarding copyright ownership.
 # The ASF licenses this file to You under the Apache License, Version 2.0
 # (the License); you may not use this file except in compliance with
 # the License. You may obtain a copy of the License at
 #
 # http://www.apache.org/licenses/LICENSE-2.0
 #
 # Unless required by applicable law or agreed to in writing, software
 # distributed under the License is distributed on an AS IS BASIS,
 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied.
 # See the License for the specific language governing permissions and
 # limitations under the License.

 # This table is maps PDF stream operators to concrete OperatorProcessor
 # subclasses that are used by the PDFStreamEngine class to interpret the
 # PDF document. The classes configured here allow the PDFTextStripper
 # subclass of PDFStreamEngine to extract text content of the document.

 BT = org.apache.pdfbox.util.operator.BeginText
 cm = org.apache.pdfbox.util.operator.Concatenate
 Do = org.apache.pdfbox.util.operator.Invoke
 ET = org.apache.pdfbox.util.operator.EndText
 gs = org.apache.pdfbox.util.operator.SetGraphicsStateParameters
 q = org.apache.pdfbox.util.operator.GSave
 Q = org.apache.pdfbox.util.operator.GRestore
 T* = org.apache.pdfbox.util.operator.NextLine
 Tc = org.apache.pdfbox.util.operator.SetCharSpacing
 Td = org.apache.pdfbox.util.operator.MoveText
 TD = org.apache.pdfbox.util.operator.MoveTextSetLeading
 Tf = org.apache.pdfbox.util.operator.SetTextFont

Re: Custom TextStripper / PDGraphicsState Not Reading Color

2014-07-29

Thread
John Hewson

On 29 Jul 2014, at 03:44, Andreas Lehmkühler andr...@lehmi.de wrote:

 Hi,

 it's not a black and white issue (comments inline)

 John Hewson j...@jahewson.com hat am 29. Juli 2014 um 07:44 geschrieben:

 Yes, really I should have said subclasses of PDFStreamEngine - that's where
 the .properties file originates. I'd propose replacing the properties
 mechanism with a simple method containing the mapping which can be overridden
 in subclasses. Ultimately, users expect to be able to subclass the behaviour
 of a class by just subclassing the class.
 PDFStreamEngine doesn't configure any operator set itself. The subclasses are
 supposed to configure their own set of operators depending on the particular
 usecase. E.g. to extend the text extraction one has to subclass
 PDFTextStripper
 and so on.

It’s PDFStreamEngine which implements the .property mechanism though, via the
PDFStreamEngine(Properties properties) constructor.

 E.g. to extend the text extraction one has to subclass PDFTextStripper and so
 on.

That’s true, but it’s only half the story, don’t forget that the .properties
files need
to be copied and pasted elsewhere and modified along with overriding which
.property
file is passed in the constructor if you want to truly override the class’
behaviour.

 We've seen a number of incidents of confusion on the mailing list due to the
 current design.
 IMHO, most of the confusion is based on the lack of knowledge of the pdf spec.
 One can't understand how pdfbox works under the hood by simply looking at the
 code. One has to understand the pdf spec as well, at least the base concepts.

I’m specifically talking about confusion surrounding how to override operators,
and
.properties files, this has come up before. This entire thread has been caused
by
PDFBox’s design and *not* the PDF spec.

 I'd say that to the modern Java developer having non-code runtime binding has
 become an anti-pattern, resulting in brittle code which can't easily be
 navigated in an IDE and which resists automated analysis and exhibits runtime
 failures despite compiling ok. This is one of those cases where the
 collective
 wisdom has just evolved over the years.
 It depends on the given usecase. All solutions have advantages and
 disadvantages. E.g. if someone wants to configure the PDFTextStripper without
 recompiling the code, it is quite handy to keep the configuration in a text
 file.

Has anybody *ever* wanted to change the operators which PDFTextStripper is
processing without recompiling the code? These are internal implementation
details that shouldn’t be exposed in the first place - it’s not a
“configuration” at
all, especially as 99% of possible changes would just break PDFTextStripper.

 In this case I'm neither pro or con a text based config, but I tend to agree
 with John to have the different configurations in some method within the
 subclasses of PDFStreamEngine.

As above, this isn’t “configuration” at all, it lacks even a basic use case. I
don’t
see any pros which aren’t fabricated for the sake of argument, but the cons are
causing us significant problems right here, right now.

 BR
 Andreas Lehmkühler

 -- John

 On 28 Jul 2014, at 13:42, Tilman Hausherr thaush...@t-online.de wrote:

 I disagree - one doesn't *have* to pass a property file to PDFTextStripper
 and PageDrawer. The properties file for PDFTextStripper is optional. The
 property parameter was already there before it became an apache project.

 Tilman

 Am 28.07.2014 22:08, schrieb John Hewson:
 We need to get rid of these .properties files, they’re causing endless
 confusion, not to mention that they hide runtime dependencies in text
 files.

 We should make it so that overriding a TextStripper, PageDrawer, etc.
 doesn’t require external .properties files, currently Preflight works in
 this manner and it’s much clearer.

 I guess this is a legacy of the “old” ways of Java XML everything.

 -- John

 On 27 Jul 2014, at 10:09, -A aa...@hrtmn.net wrote:

 Thank you, that works as promised and removes the warning. I'm still
 hoping
 to find a resource that better explains the pieces of PDFBox and how they
 work together. Unfortunately most posts on the internet are solely how and
 not why.

 Appreciate it!

 -Aaron

 On Sun, Jul 27, 2014 at 8:00 AM, Tilman Hausherr thaush...@t-online.de
 wrote:

 Hi,

 That didn't happen to me, but maybe it did happen to you with another
 file.

 Another solution would be to pass your own properties file, and it should
 have this content:

 ===
 # Licensed to the Apache Software Foundation (ASF) under one or more
 # contributor license agreements. See the NOTICE file distributed with
 # this work for additional information regarding copyright ownership.
 # The ASF licenses this file to You under the Apache License, Version 2.0
 # (the License); you may not use this file except in compliance with
 # the License. You may obtain a copy of the License at
 #
 #

Re: Custom TextStripper / PDGraphicsState Not Reading Color

2014-07-29

Thread
Tilman Hausherr

Hi,

At this time, the problem I see and wanted to solve (PDFBOX-2246) exists
regardless whether we use a properties file or initialize directly in
the code.

Tilman

Am 29.07.2014 19:41, schrieb John Hewson:

On 29 Jul 2014, at 03:44, Andreas Lehmkühler andr...@lehmi.de wrote:

Hi,

it's not a black and white issue (comments inline)

John Hewson j...@jahewson.com hat am 29. Juli 2014 um 07:44 geschrieben:

Yes, really I should have said subclasses of PDFStreamEngine - that's where
the .properties file originates. I'd propose replacing the properties
mechanism with a simple method containing the mapping which can be overridden
in subclasses. Ultimately, users expect to be able to subclass the behaviour
of a class by just subclassing the class.

PDFStreamEngine doesn't configure any operator set itself. The subclasses are
supposed to configure their own set of operators depending on the particular
usecase. E.g. to extend the text extraction one has to subclass PDFTextStripper
and so on.

It’s PDFStreamEngine which implements the .property mechanism though, via the
PDFStreamEngine(Properties properties) constructor.

E.g. to extend the text extraction one has to subclass PDFTextStripper and so
on.

That’s true, but it’s only half the story, don’t forget that the .properties
files need
to be copied and pasted elsewhere and modified along with overriding which
.property
file is passed in the constructor if you want to truly override the class’
behaviour.

We've seen a number of incidents of confusion on the mailing list due to the
current design.

IMHO, most of the confusion is based on the lack of knowledge of the pdf spec.
One can't understand how pdfbox works under the hood by simply looking at the
code. One has to understand the pdf spec as well, at least the base concepts.

I’m specifically talking about confusion surrounding how to override operators,
and
.properties files, this has come up before. This entire thread has been caused
by
PDFBox’s design and *not* the PDF spec.

I'd say that to the modern Java developer having non-code runtime binding has
become an anti-pattern, resulting in brittle code which can't easily be
navigated in an IDE and which resists automated analysis and exhibits runtime
failures despite compiling ok. This is one of those cases where the collective
wisdom has just evolved over the years.

It depends on the given usecase. All solutions have advantages and
disadvantages. E.g. if someone wants to configure the PDFTextStripper without
recompiling the code, it is quite handy to keep the configuration in a text
file.

Has anybody *ever* wanted to change the operators which PDFTextStripper is
processing without recompiling the code? These are internal implementation
details that shouldn’t be exposed in the first place - it’s not a
“configuration” at
all, especially as 99% of possible changes would just break PDFTextStripper.

In this case I'm neither pro or con a text based config, but I tend to agree
with John to have the different configurations in some method within the
subclasses of PDFStreamEngine.

As above, this isn’t “configuration” at all, it lacks even a basic use case. I
don’t
see any pros which aren’t fabricated for the sake of argument, but the cons are
causing us significant problems right here, right now.

BR
Andreas Lehmkühler

-- John

On 28 Jul 2014, at 13:42, Tilman Hausherr thaush...@t-online.de wrote:

I disagree - one doesn't *have* to pass a property file to PDFTextStripper
and PageDrawer. The properties file for PDFTextStripper is optional. The
property parameter was already there before it became an apache project.

Tilman

Am 28.07.2014 22:08, schrieb John Hewson:

We need to get rid of these .properties files, they’re causing endless
confusion, not to mention that they hide runtime dependencies in text
files.

We should make it so that overriding a TextStripper, PageDrawer, etc.
doesn’t require external .properties files, currently Preflight works in
this manner and it’s much clearer.

I guess this is a legacy of the “old” ways of Java XML everything.

-- John

On 27 Jul 2014, at 10:09, -A aa...@hrtmn.net wrote:

Thank you, that works as promised and removes the warning. I'm still
hoping
to find a resource that better explains the pieces of PDFBox and how they
work together. Unfortunately most posts on the internet are solely how and
not why.

Appreciate it!

-Aaron

On Sun, Jul 27, 2014 at 8:00 AM, Tilman Hausherr thaush...@t-online.de
wrote:

Hi,

That didn't happen to me, but maybe it did happen to you with another
file.

Another solution would be to pass your own properties file, and it should
have this content:

===
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0

Re: Custom TextStripper / PDGraphicsState Not Reading Color

2014-07-28

Thread
John Hewson

We need to get rid of these .properties files, they’re causing endless
confusion, not to mention that they hide runtime dependencies in text files.

We should make it so that overriding a TextStripper, PageDrawer, etc. doesn’t
require external .properties files, currently Preflight works in this manner
and it’s much clearer.

I guess this is a legacy of the “old” ways of Java XML everything.

-- John

On 27 Jul 2014, at 10:09, -A aa...@hrtmn.net wrote:

 Thank you, that works as promised and removes the warning. I'm still hoping
 to find a resource that better explains the pieces of PDFBox and how they
 work together. Unfortunately most posts on the internet are solely how and
 not why.

 Appreciate it!

 -Aaron

 On Sun, Jul 27, 2014 at 8:00 AM, Tilman Hausherr thaush...@t-online.de
 wrote:

 Hi,

 That didn't happen to me, but maybe it did happen to you with another file.

 Another solution would be to pass your own properties file, and it should
 have this content:

 ===
 # Licensed to the Apache Software Foundation (ASF) under one or more
 # contributor license agreements. See the NOTICE file distributed with
 # this work for additional information regarding copyright ownership.
 # The ASF licenses this file to You under the Apache License, Version 2.0
 # (the License); you may not use this file except in compliance with
 # the License. You may obtain a copy of the License at
 #
 # http://www.apache.org/licenses/LICENSE-2.0
 #
 # Unless required by applicable law or agreed to in writing, software
 # distributed under the License is distributed on an AS IS BASIS,
 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 # See the License for the specific language governing permissions and
 # limitations under the License.

 # This table is maps PDF stream operators to concrete OperatorProcessor
 # subclasses that are used by the PDFStreamEngine class to interpret the
 # PDF document. The classes configured here allow the PDFTextStripper
 # subclass of PDFStreamEngine to extract text content of the document.

 BT = org.apache.pdfbox.util.operator.BeginText
 cm = org.apache.pdfbox.util.operator.Concatenate
 Do = org.apache.pdfbox.util.operator.Invoke
 ET = org.apache.pdfbox.util.operator.EndText
 gs = org.apache.pdfbox.util.operator.SetGraphicsStateParameters
 q = org.apache.pdfbox.util.operator.GSave
 Q = org.apache.pdfbox.util.operator.GRestore
 T* = org.apache.pdfbox.util.operator.NextLine
 Tc = org.apache.pdfbox.util.operator.SetCharSpacing
 Td = org.apache.pdfbox.util.operator.MoveText
 TD = org.apache.pdfbox.util.operator.MoveTextSetLeading
 Tf = org.apache.pdfbox.util.operator.SetTextFont
 Tj = org.apache.pdfbox.util.operator.ShowText
 TJ = org.apache.pdfbox.util.operator.ShowTextGlyph
 TL = org.apache.pdfbox.util.operator.SetTextLeading
 Tm = org.apache.pdfbox.util.operator.SetMatrix
 Tr = org.apache.pdfbox.util.operator.SetTextRenderingMode
 Ts = org.apache.pdfbox.util.operator.SetTextRise
 Tw = org.apache.pdfbox.util.operator.SetWordSpacing
 Tz = org.apache.pdfbox.util.operator.SetHorizontalTextScaling
 w = org.apache.pdfbox.util.operator.SetLineWidth
 \' = org.apache.pdfbox.util.operator.MoveAndShow
 \ = org.apache.pdfbox.util.operator.SetMoveAndShow

 CS=org.apache.pdfbox.util.operator.SetStrokingColorSpace
 cs=org.apache.pdfbox.util.operator.SetNonStrokingColorSpace
 rg=org.apache.pdfbox.util.operator.SetNonStrokingRGBColor
 G=org.apache.pdfbox.util.operator.SetStrokingGrayColor
 g=org.apache.pdfbox.util.operator.SetNonStrokingGrayColor
 K=org.apache.pdfbox.util.operator.SetStrokingCMYKColor
 k=org.apache.pdfbox.util.operator.SetNonStrokingCMYKColor
 RG=org.apache.pdfbox.util.operator.SetStrokingRGBColor
 rg=org.apache.pdfbox.util.operator.SetNonStrokingRGBColor
 SC=org.apache.pdfbox.util.operator.SetStrokingColor
 sc=org.apache.pdfbox.util.operator.SetNonStrokingColor
 SCN=org.apache.pdfbox.util.operator.SetStrokingColor
 scn=org.apache.pdfbox.util.operator.SetNonStrokingColor

 # The following operators are not relevant to text extraction,
 # so we can silently ignore them.

 b
 B
 b*
 B*
 BDC
 BI
 BMC
 BX
 c
 d
 d0
 d1
 DP
 El
 EMC
 EX
 f
 F
 f*
 h
 i
 ID
 j
 J
 l
 m
 M
 MP
 n
 re
 ri
 s
 S
 sh
 v
 W
 W*
 y

 ===

 Tilman

 Am 27.07.2014 15:54, schrieb -A:

 Tilman;

 That is somewhat embarrassing. At one point I brought this to the mailing
 list (because of the following warning) and was told to remove that line
 because the TextStripper wasn't actually a PageDrawer. The functionality
 still worked after that, however.

 Is there a way to do this without the warning, perhaps something within
 PageDrawer?

 Thank you,
 -Aaron

 WARNING: java.lang.ClassCastException: IncrementalPDFStripper cannot be
 cast to org.apache.pdfbox.pdfviewer.PageDrawer
 java.lang.ClassCastException: IncrementalPDFStripper cannot be cast to
 org.apache.pdfbox.pdfviewer.PageDrawer
 at

Re: Custom TextStripper / PDGraphicsState Not Reading Color

2014-07-28

Thread
Tilman Hausherr

I disagree - one doesn't *have* to pass a property file to
PDFTextStripper and PageDrawer. The properties file for PDFTextStripper
is optional. The property parameter was already there before it became
an apache project.

Tilman

Am 28.07.2014 22:08, schrieb John Hewson:

We need to get rid of these .properties files, they’re causing endless
confusion, not to mention that they hide runtime dependencies in text files.

We should make it so that overriding a TextStripper, PageDrawer, etc. doesn’t
require external .properties files, currently Preflight works in this manner
and it’s much clearer.

I guess this is a legacy of the “old” ways of Java XML everything.

-- John

On 27 Jul 2014, at 10:09, -A aa...@hrtmn.net wrote:

Thank you, that works as promised and removes the warning. I'm still hoping
to find a resource that better explains the pieces of PDFBox and how they
work together. Unfortunately most posts on the internet are solely how and
not why.

Appreciate it!

-Aaron

On Sun, Jul 27, 2014 at 8:00 AM, Tilman Hausherr thaush...@t-online.de
wrote:

Hi,

That didn't happen to me, but maybe it did happen to you with another file.

Another solution would be to pass your own properties file, and it should
have this content:

===
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the License); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an AS IS BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

This table is maps PDF stream operators to concrete OperatorProcessor
subclasses that are used by the PDFStreamEngine class to interpret the
PDF document. The classes configured here allow the PDFTextStripper
subclass of PDFStreamEngine to extract text content of the document.

BT = org.apache.pdfbox.util.operator.BeginText
cm = org.apache.pdfbox.util.operator.Concatenate
Do = org.apache.pdfbox.util.operator.Invoke
ET = org.apache.pdfbox.util.operator.EndText
gs = org.apache.pdfbox.util.operator.SetGraphicsStateParameters
q = org.apache.pdfbox.util.operator.GSave
Q = org.apache.pdfbox.util.operator.GRestore
T* = org.apache.pdfbox.util.operator.NextLine
Tc = org.apache.pdfbox.util.operator.SetCharSpacing
Td = org.apache.pdfbox.util.operator.MoveText
TD = org.apache.pdfbox.util.operator.MoveTextSetLeading
Tf = org.apache.pdfbox.util.operator.SetTextFont
Tj = org.apache.pdfbox.util.operator.ShowText
TJ = org.apache.pdfbox.util.operator.ShowTextGlyph
TL = org.apache.pdfbox.util.operator.SetTextLeading
Tm = org.apache.pdfbox.util.operator.SetMatrix
Tr = org.apache.pdfbox.util.operator.SetTextRenderingMode
Ts = org.apache.pdfbox.util.operator.SetTextRise
Tw = org.apache.pdfbox.util.operator.SetWordSpacing
Tz = org.apache.pdfbox.util.operator.SetHorizontalTextScaling
w = org.apache.pdfbox.util.operator.SetLineWidth
\' = org.apache.pdfbox.util.operator.MoveAndShow
\ = org.apache.pdfbox.util.operator.SetMoveAndShow

CS=org.apache.pdfbox.util.operator.SetStrokingColorSpace
cs=org.apache.pdfbox.util.operator.SetNonStrokingColorSpace
rg=org.apache.pdfbox.util.operator.SetNonStrokingRGBColor
G=org.apache.pdfbox.util.operator.SetStrokingGrayColor
g=org.apache.pdfbox.util.operator.SetNonStrokingGrayColor
K=org.apache.pdfbox.util.operator.SetStrokingCMYKColor
k=org.apache.pdfbox.util.operator.SetNonStrokingCMYKColor
RG=org.apache.pdfbox.util.operator.SetStrokingRGBColor
rg=org.apache.pdfbox.util.operator.SetNonStrokingRGBColor
SC=org.apache.pdfbox.util.operator.SetStrokingColor
sc=org.apache.pdfbox.util.operator.SetNonStrokingColor
SCN=org.apache.pdfbox.util.operator.SetStrokingColor
scn=org.apache.pdfbox.util.operator.SetNonStrokingColor

The following operators are not relevant to text extraction,
so we can silently ignore them.

b
B
b*
B*
BDC
BI
BMC
BX
c
d
d0
d1
DP
El
EMC
EX
f
F
f*
h
i
ID
j
J
l
m
M
MP
n
re
ri
s
S
sh
v
W
W*
y

===

Tilman

Am 27.07.2014 15:54, schrieb -A:

Tilman;

That is somewhat embarrassing. At one point I brought this to the mailing
list (because of the following warning) and was told to remove that line
because the TextStripper wasn't actually a PageDrawer. The functionality
still worked after that, however.

Is there a way to do this without the warning, perhaps something within
PageDrawer?

Thank you,
-Aaron

WARNING: java.lang.ClassCastException: IncrementalPDFStripper cannot be
cast to org.apache.pdfbox.pdfviewer.PageDrawer

Re: Custom TextStripper / PDGraphicsState Not Reading Color

2014-07-28

Thread
John Hewson

Yes, really I should have said subclasses of PDFStreamEngine - that's where
the .properties file originates. I'd propose replacing the properties mechanism
with a simple method containing the mapping which can be overridden in
subclasses. Ultimately, users expect to be able to subclass the behaviour of a
class by just subclassing the class.

We've seen a number of incidents of confusion on the mailing list due to the
current design. I'd say that to the modern Java developer having non-code
runtime binding has become an anti-pattern, resulting in brittle code which
can't easily be navigated in an IDE and which resists automated analysis and
exhibits runtime failures despite compiling ok. This is one of those cases
where the collective wisdom has just evolved over the years.

-- John

 On 28 Jul 2014, at 13:42, Tilman Hausherr thaush...@t-online.de wrote:

 I disagree - one doesn't *have* to pass a property file to PDFTextStripper
 and PageDrawer. The properties file for PDFTextStripper is optional. The
 property parameter was already there before it became an apache project.

 Tilman

 Am 28.07.2014 22:08, schrieb John Hewson:
 We need to get rid of these .properties files, they’re causing endless
 confusion, not to mention that they hide runtime dependencies in text files.

 We should make it so that overriding a TextStripper, PageDrawer, etc.
 doesn’t require external .properties files, currently Preflight works in
 this manner and it’s much clearer.

 I guess this is a legacy of the “old” ways of Java XML everything.

 -- John

 On 27 Jul 2014, at 10:09, -A aa...@hrtmn.net wrote:

 Thank you, that works as promised and removes the warning. I'm still hoping
 to find a resource that better explains the pieces of PDFBox and how they
 work together. Unfortunately most posts on the internet are solely how and
 not why.

 Appreciate it!

 -Aaron

 On Sun, Jul 27, 2014 at 8:00 AM, Tilman Hausherr thaush...@t-online.de
 wrote:

 Hi,

 That didn't happen to me, but maybe it did happen to you with another file.

 Another solution would be to pass your own properties file, and it should
 have this content:

 ===
 # Licensed to the Apache Software Foundation (ASF) under one or more
 # contributor license agreements. See the NOTICE file distributed with
 # this work for additional information regarding copyright ownership.
 # The ASF licenses this file to You under the Apache License, Version 2.0
 # (the License); you may not use this file except in compliance with
 # the License. You may obtain a copy of the License at
 #
 # http://www.apache.org/licenses/LICENSE-2.0
 #
 # Unless required by applicable law or agreed to in writing, software
 # distributed under the License is distributed on an AS IS BASIS,
 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 # See the License for the specific language governing permissions and
 # limitations under the License.

 # This table is maps PDF stream operators to concrete OperatorProcessor
 # subclasses that are used by the PDFStreamEngine class to interpret the
 # PDF document. The classes configured here allow the PDFTextStripper
 # subclass of PDFStreamEngine to extract text content of the document.

 BT = org.apache.pdfbox.util.operator.BeginText
 cm = org.apache.pdfbox.util.operator.Concatenate
 Do = org.apache.pdfbox.util.operator.Invoke
 ET = org.apache.pdfbox.util.operator.EndText
 gs = org.apache.pdfbox.util.operator.SetGraphicsStateParameters
 q = org.apache.pdfbox.util.operator.GSave
 Q = org.apache.pdfbox.util.operator.GRestore
 T* = org.apache.pdfbox.util.operator.NextLine
 Tc = org.apache.pdfbox.util.operator.SetCharSpacing
 Td = org.apache.pdfbox.util.operator.MoveText
 TD = org.apache.pdfbox.util.operator.MoveTextSetLeading
 Tf = org.apache.pdfbox.util.operator.SetTextFont
 Tj = org.apache.pdfbox.util.operator.ShowText
 TJ = org.apache.pdfbox.util.operator.ShowTextGlyph
 TL = org.apache.pdfbox.util.operator.SetTextLeading
 Tm = org.apache.pdfbox.util.operator.SetMatrix
 Tr = org.apache.pdfbox.util.operator.SetTextRenderingMode
 Ts = org.apache.pdfbox.util.operator.SetTextRise
 Tw = org.apache.pdfbox.util.operator.SetWordSpacing
 Tz = org.apache.pdfbox.util.operator.SetHorizontalTextScaling
 w = org.apache.pdfbox.util.operator.SetLineWidth
 \' = org.apache.pdfbox.util.operator.MoveAndShow
 \ = org.apache.pdfbox.util.operator.SetMoveAndShow

 CS=org.apache.pdfbox.util.operator.SetStrokingColorSpace
 cs=org.apache.pdfbox.util.operator.SetNonStrokingColorSpace
 rg=org.apache.pdfbox.util.operator.SetNonStrokingRGBColor
 G=org.apache.pdfbox.util.operator.SetStrokingGrayColor
 g=org.apache.pdfbox.util.operator.SetNonStrokingGrayColor
 K=org.apache.pdfbox.util.operator.SetStrokingCMYKColor
 k=org.apache.pdfbox.util.operator.SetNonStrokingCMYKColor
 RG=org.apache.pdfbox.util.operator.SetStrokingRGBColor
 rg=org.apache.pdfbox.util.operator.SetNonStrokingRGBColor

Re: Custom TextStripper / PDGraphicsState Not Reading Color

2014-07-27

Thread
Tilman Hausherr

After having written the text below, I tested by including the rg
operator in the properties list and now it worked. I also tested
deleting your println and instead adding this if the text is red:

System.out.print (textPos.getCharacter());

and so I got this output:

21_Key .1295 R~Wall Prof LinP 0.003 0.004 0.000 true

which is exactly what is red in the PDF.

Another way (probably better) to do it would probably be to not derive
PDFTextStripper but |PDFStreamEngine and construct it with||

ResourceLoader.loadProperties(org/apache/pdfbox/resources/PageDrawer.properties)|

see also http://stackoverflow.com/a/9157714/535646

Tilman

Am 27.07.2014 12:14, schrieb Tilman Hausherr:

Hi,

Do you still have the code that worked?

I'm not the text extraction specialist here, but what I did was to
look in the uncompressed source of the PDF. The stream has code like
this:

0 0 0 rg
0 0.5019 0 rg
1 0 0 rg

The first line sets to black, the second to green, the third to red.
And from what I saw, it can't work at all, because the rg operator
isn't processed when extracting text, because
PDFTextStripper.properties doesn't contain the rg operator. (The
operator is in another list, which is used when rendering)

So that is what puzzles me. I think it can't work at all. But you said
it did work at a time.

Tilman

Am 27.07.2014 07:43, schrieb Tilman Hausherr:

Hi,

Please upload the PDF somewhere and post the URL, PDF files are
removed from the mailing list.

Tilman

Am 27.07.2014 02:35, schrieb -A:
Hello again. I've been trying to figure out this issue that has come
up for me and in my research I found someone posting on
StackOverflow
(http://stackoverflow.com/questions/10844271/how-to-get-font-color-using-pdfbox)
a similar issue where they could not read any colors from a PDF. The
user posted the code and someone else took it, ran it, and reported
that it worked. The users approach was different than mine, but alas.

I'm not sure at this point what is going on. I have stepped through
each individual character and checked the PDGraphicsState object,
and even when I am looking at an open file with visibly red text
(attached) the debugger only reports DeviceGray. If I print out the
ColorSpace name from the PDGraphicsState this is what is printed -
for every character.

I would appreciate if someone could perhaps run the attached text
stripper with the attached PDF file and report back if it actually
prints trueinstead of false, as it does for me. Since I saw this
occurrence elsewhere I'd like to rule that out - in case an IDE
setting of some sort may be causing this?

It should be noted that I began using PDFBox with 1.8.5 and had this
code working fine. Still with 1.8.5 yesterday it was failing.
Upgrading to 1.8.6 yielded the same results.

If this is an actual issue I do not mind attempting to solve it if
someone may have a general idea where to point me as to prevent
needless meddling with graphics state objects. Or, if this should be
reported I can do that as well.

Thanks!

-Aaron

Previous Message:
*
*
*
*
I've attached an updated stripper file with the only addition being
a main function to test the class specifically.

When ran with the PDF I have also attached it indeed does not
recognize the red text.

At this point it seems that this issue is solely dependent on
PDFBox. I'll stay tuned for some insight hopefully. If any other
information is needed, let me know!

Re: Custom TextStripper / PDGraphicsState Not Reading Color

2014-07-27

Thread
Tilman Hausherr

It is even easier than I thought - replace super() with this:

super(ResourceLoader.loadProperties(org/apache/pdfbox/resources/PageDrawer.properties,
true));

Tilman

Am 27.07.2014 13:03, schrieb Tilman Hausherr:
After having written the text below, I tested by including the rg
operator in the properties list and now it worked. I also tested
deleting your println and instead adding this if the text is red:

System.out.print (textPos.getCharacter());

and so I got this output:

21_Key .1295 R~Wall Prof LinP 0.003 0.004 0.000 true

which is exactly what is red in the PDF.

Another way (probably better) to do it would probably be to not derive
PDFTextStripper but |PDFStreamEngine and construct it with||

ResourceLoader.loadProperties(org/apache/pdfbox/resources/PageDrawer.properties)|

see also http://stackoverflow.com/a/9157714/535646

Tilman

Am 27.07.2014 12:14, schrieb Tilman Hausherr:

Hi,

Do you still have the code that worked?

I'm not the text extraction specialist here, but what I did was to
look in the uncompressed source of the PDF. The stream has code like
this:

0 0 0 rg
0 0.5019 0 rg
1 0 0 rg

The first line sets to black, the second to green, the third to red.
And from what I saw, it can't work at all, because the rg operator
isn't processed when extracting text, because
PDFTextStripper.properties doesn't contain the rg operator. (The
operator is in another list, which is used when rendering)

So that is what puzzles me. I think it can't work at all. But you
said it did work at a time.

Tilman

Am 27.07.2014 07:43, schrieb Tilman Hausherr:

Hi,

Please upload the PDF somewhere and post the URL, PDF files are
removed from the mailing list.

Tilman

Am 27.07.2014 02:35, schrieb -A:
Hello again. I've been trying to figure out this issue that has
come up for me and in my research I found someone posting on
StackOverflow
(http://stackoverflow.com/questions/10844271/how-to-get-font-color-using-pdfbox)
a similar issue where they could not read any colors from a PDF.
The user posted the code and someone else took it, ran it, and
reported that it worked. The users approach was different than
mine, but alas.

I'm not sure at this point what is going on. I have stepped through
each individual character and checked the PDGraphicsState object,
and even when I am looking at an open file with visibly red text
(attached) the debugger only reports DeviceGray. If I print out the
ColorSpace name from the PDGraphicsState this is what is printed -
for every character.

I would appreciate if someone could perhaps run the attached text
stripper with the attached PDF file and report back if it actually
prints trueinstead of false, as it does for me. Since I saw this
occurrence elsewhere I'd like to rule that out - in case an IDE
setting of some sort may be causing this?

It should be noted that I began using PDFBox with 1.8.5 and had
this code working fine. Still with 1.8.5 yesterday it was failing.
Upgrading to 1.8.6 yielded the same results.

If this is an actual issue I do not mind attempting to solve it if
someone may have a general idea where to point me as to prevent
needless meddling with graphics state objects. Or, if this should
be reported I can do that as well.

Thanks!

-Aaron

Previous Message:
*
*
*
*
I've attached an updated stripper file with the only addition being
a main function to test the class specifically.

When ran with the PDF I have also attached it indeed does not
recognize the red text.

At this point it seems that this issue is solely dependent on
PDFBox. I'll stay tuned for some insight hopefully. If any other
information is needed, let me know!

Re: Custom TextStripper / PDGraphicsState Not Reading Color

2014-07-27

Thread
-A

Tilman;

That is somewhat embarrassing. At one point I brought this to the mailing
list (because of the following warning) and was told to remove that line
because the TextStripper wasn't actually a PageDrawer. The functionality
still worked after that, however.

Is there a way to do this without the warning, perhaps something within
PageDrawer?

Thank you,
-Aaron

WARNING: java.lang.ClassCastException: IncrementalPDFStripper cannot be
cast to org.apache.pdfbox.pdfviewer.PageDrawer
java.lang.ClassCastException: IncrementalPDFStripper cannot be cast to
org.apache.pdfbox.pdfviewer.PageDrawer
 at
org.apache.pdfbox.util.operator.pagedrawer.AppendRectangleToPath.process(AppendRectangleToPath.java:46)
 at
org.apache.pdfbox.util.PDFStreamEngine.processOperator(PDFStreamEngine.java:557)
at
org.apache.pdfbox.util.PDFStreamEngine.processSubStream(PDFStreamEngine.java:268)
 at
org.apache.pdfbox.util.PDFStreamEngine.processSubStream(PDFStreamEngine.java:235)
 at
org.apache.pdfbox.util.PDFStreamEngine.processStream(PDFStreamEngine.java:215)
at IncrementalPDFStripper.containsRed(IncrementalPDFStripper.java:90)
 at IncrementalPDFStripper.main(IncrementalPDFStripper.java:56)

On Sun, Jul 27, 2014 at 5:47 AM, Tilman Hausherr thaush...@t-online.de
wrote:

 It is even easier than I thought - replace super() with this:

 super(ResourceLoader.loadProperties(org/apache/
 pdfbox/resources/PageDrawer.properties, true));

 Tilman

 Am 27.07.2014 13:03, schrieb Tilman Hausherr:

 After having written the text below, I tested by including the rg
 operator in the properties list and now it worked. I also tested deleting
 your println and instead adding this if the text is red:

 System.out.print (textPos.getCharacter());

 and so I got this output:

 21_Key .1295 R~Wall Prof LinP 0.003 0.004 0.000 true

 which is exactly what is red in the PDF.

 Another way (probably better) to do it would probably be to not derive
 PDFTextStripper but |PDFStreamEngine and construct it with||

 ResourceLoader.loadProperties(org/apache/pdfbox/resources/PageDrawer.properties)|

 see also http://stackoverflow.com/a/9157714/535646

 Tilman

 Am 27.07.2014 12:14, schrieb Tilman Hausherr:

 Hi,

 Do you still have the code that worked?

 I'm not the text extraction specialist here, but what I did was to look
 in the uncompressed source of the PDF. The stream has code like this:

 0 0 0 rg
 0 0.5019 0 rg
 1 0 0 rg

 The first line sets to black, the second to green, the third to red. And
 from what I saw, it can't work at all, because the rg operator isn't
 processed when extracting text, because PDFTextStripper.properties doesn't
 contain the rg operator. (The operator is in another list, which is used
 when rendering)

 So that is what puzzles me. I think it can't work at all. But you said
 it did work at a time.

 Tilman

 Am 27.07.2014 07:43, schrieb Tilman Hausherr:

 Hi,

 Please upload the PDF somewhere and post the URL, PDF files are removed
 from the mailing list.

 Tilman

 Am 27.07.2014 02:35, schrieb -A:

 Hello again. I've been trying to figure out this issue that has come
 up for me and in my research I found someone posting on StackOverflow (
 http://stackoverflow.com/questions/10844271/how-to-get-
 font-color-using-pdfbox) a similar issue where they could not read
 any colors from a PDF. The user posted the code and someone else took it,
 ran it, and reported that it worked. The users approach was different than
 mine, but alas.

 I'm not sure at this point what is going on. I have stepped through
 each individual character and checked the PDGraphicsState object, and even
 when I am looking at an open file with visibly red text (attached) the
 debugger only reports DeviceGray. If I print out the ColorSpace name from
 the PDGraphicsState this is what is printed - for every character.

 I would appreciate if someone could perhaps run the attached text
 stripper with the attached PDF file and report back if it actually prints
 trueinstead of false, as it does for me. Since I saw this occurrence
 elsewhere I'd like to rule that out - in case an IDE setting of some sort
 may be causing this?

 It should be noted that I began using PDFBox with 1.8.5 and had this
 code working fine. Still with 1.8.5 yesterday it was failing. Upgrading to
 1.8.6 yielded the same results.

 If this is an actual issue I do not mind attempting to solve it if
 someone may have a general idea where to point me as to prevent needless
 meddling with graphics state objects. Or, if this should be reported I can
 do that as well.

 Thanks!

 -Aaron

 Previous Message:
 *
 *
 *
 *
 I've attached an updated stripper file with the only addition being a
 main function to test the class specifically.

 When ran with the PDF I have also attached it indeed does not
 recognize the red text.

 At this point it seems that this issue is solely dependent on PDFBox.
 I'll stay tuned for some insight hopefully. If any other information is
 needed, let me

Re: Custom TextStripper / PDGraphicsState Not Reading Color

2014-07-27

Thread
Tilman Hausherr

Hi,

That didn't happen to me, but maybe it did happen to you with another file.

Another solution would be to pass your own properties file, and it
should have this content:

===
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the License); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an AS IS BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

This table is maps PDF stream operators to concrete OperatorProcessor
subclasses that are used by the PDFStreamEngine class to interpret the
PDF document. The classes configured here allow the PDFTextStripper
subclass of PDFStreamEngine to extract text content of the document.

BT = org.apache.pdfbox.util.operator.BeginText
cm = org.apache.pdfbox.util.operator.Concatenate
Do = org.apache.pdfbox.util.operator.Invoke
ET = org.apache.pdfbox.util.operator.EndText
gs = org.apache.pdfbox.util.operator.SetGraphicsStateParameters
q = org.apache.pdfbox.util.operator.GSave
Q = org.apache.pdfbox.util.operator.GRestore
T* = org.apache.pdfbox.util.operator.NextLine
Tc = org.apache.pdfbox.util.operator.SetCharSpacing
Td = org.apache.pdfbox.util.operator.MoveText
TD = org.apache.pdfbox.util.operator.MoveTextSetLeading
Tf = org.apache.pdfbox.util.operator.SetTextFont
Tj = org.apache.pdfbox.util.operator.ShowText
TJ = org.apache.pdfbox.util.operator.ShowTextGlyph
TL = org.apache.pdfbox.util.operator.SetTextLeading
Tm = org.apache.pdfbox.util.operator.SetMatrix
Tr = org.apache.pdfbox.util.operator.SetTextRenderingMode
Ts = org.apache.pdfbox.util.operator.SetTextRise
Tw = org.apache.pdfbox.util.operator.SetWordSpacing
Tz = org.apache.pdfbox.util.operator.SetHorizontalTextScaling
w = org.apache.pdfbox.util.operator.SetLineWidth
\' = org.apache.pdfbox.util.operator.MoveAndShow
\ = org.apache.pdfbox.util.operator.SetMoveAndShow

CS=org.apache.pdfbox.util.operator.SetStrokingColorSpace
cs=org.apache.pdfbox.util.operator.SetNonStrokingColorSpace
rg=org.apache.pdfbox.util.operator.SetNonStrokingRGBColor
G=org.apache.pdfbox.util.operator.SetStrokingGrayColor
g=org.apache.pdfbox.util.operator.SetNonStrokingGrayColor
K=org.apache.pdfbox.util.operator.SetStrokingCMYKColor
k=org.apache.pdfbox.util.operator.SetNonStrokingCMYKColor
RG=org.apache.pdfbox.util.operator.SetStrokingRGBColor
rg=org.apache.pdfbox.util.operator.SetNonStrokingRGBColor
SC=org.apache.pdfbox.util.operator.SetStrokingColor
sc=org.apache.pdfbox.util.operator.SetNonStrokingColor
SCN=org.apache.pdfbox.util.operator.SetStrokingColor
scn=org.apache.pdfbox.util.operator.SetNonStrokingColor

The following operators are not relevant to text extraction,
so we can silently ignore them.

b
B
b*
B*
BDC
BI
BMC
BX
c
d
d0
d1
DP
El
EMC
EX
f
F
f*
h
i
ID
j
J
l
m
M
MP
n
re
ri
s
S
sh
v
W
W*
y

===

Tilman

Am 27.07.2014 15:54, schrieb -A:

Tilman;

That is somewhat embarrassing. At one point I brought this to the mailing
list (because of the following warning) and was told to remove that line
because the TextStripper wasn't actually a PageDrawer. The functionality
still worked after that, however.

Is there a way to do this without the warning, perhaps something within
PageDrawer?

Thank you,
-Aaron

WARNING: java.lang.ClassCastException: IncrementalPDFStripper cannot be
cast to org.apache.pdfbox.pdfviewer.PageDrawer
java.lang.ClassCastException: IncrementalPDFStripper cannot be cast to
org.apache.pdfbox.pdfviewer.PageDrawer
 at
org.apache.pdfbox.util.operator.pagedrawer.AppendRectangleToPath.process(AppendRectangleToPath.java:46)
 at
org.apache.pdfbox.util.PDFStreamEngine.processOperator(PDFStreamEngine.java:557)
at
org.apache.pdfbox.util.PDFStreamEngine.processSubStream(PDFStreamEngine.java:268)
 at
org.apache.pdfbox.util.PDFStreamEngine.processSubStream(PDFStreamEngine.java:235)
 at
org.apache.pdfbox.util.PDFStreamEngine.processStream(PDFStreamEngine.java:215)
at IncrementalPDFStripper.containsRed(IncrementalPDFStripper.java:90)
 at IncrementalPDFStripper.main(IncrementalPDFStripper.java:56)

On Sun, Jul 27, 2014 at 5:47 AM, Tilman Hausherr thaush...@t-online.de
wrote:

It is even easier than I thought - replace super() with this:

super(ResourceLoader.loadProperties(org/apache/
pdfbox/resources/PageDrawer.properties, true));

Tilman

Am 27.07.2014 13:03, schrieb Tilman Hausherr:

 After having written the text below, I tested by including the rg

operator in the properties

Re: Custom TextStripper / PDGraphicsState Not Reading Color

2014-07-27

Thread
-A

Thank you, that works as promised and removes the warning. I'm still hoping
to find a resource that better explains the pieces of PDFBox and how they
work together. Unfortunately most posts on the internet are solely how and
not why.

Appreciate it!

-Aaron

On Sun, Jul 27, 2014 at 8:00 AM, Tilman Hausherr thaush...@t-online.de
wrote:

 Hi,

 That didn't happen to me, but maybe it did happen to you with another file.

 Another solution would be to pass your own properties file, and it should
 have this content:

 ===
 # Licensed to the Apache Software Foundation (ASF) under one or more
 # contributor license agreements. See the NOTICE file distributed with
 # this work for additional information regarding copyright ownership.
 # The ASF licenses this file to You under the Apache License, Version 2.0
 # (the License); you may not use this file except in compliance with
 # the License. You may obtain a copy of the License at
 #
 # http://www.apache.org/licenses/LICENSE-2.0
 #
 # Unless required by applicable law or agreed to in writing, software
 # distributed under the License is distributed on an AS IS BASIS,
 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 # See the License for the specific language governing permissions and
 # limitations under the License.

 # This table is maps PDF stream operators to concrete OperatorProcessor
 # subclasses that are used by the PDFStreamEngine class to interpret the
 # PDF document. The classes configured here allow the PDFTextStripper
 # subclass of PDFStreamEngine to extract text content of the document.

 BT = org.apache.pdfbox.util.operator.BeginText
 cm = org.apache.pdfbox.util.operator.Concatenate
 Do = org.apache.pdfbox.util.operator.Invoke
 ET = org.apache.pdfbox.util.operator.EndText
 gs = org.apache.pdfbox.util.operator.SetGraphicsStateParameters
 q = org.apache.pdfbox.util.operator.GSave
 Q = org.apache.pdfbox.util.operator.GRestore
 T* = org.apache.pdfbox.util.operator.NextLine
 Tc = org.apache.pdfbox.util.operator.SetCharSpacing
 Td = org.apache.pdfbox.util.operator.MoveText
 TD = org.apache.pdfbox.util.operator.MoveTextSetLeading
 Tf = org.apache.pdfbox.util.operator.SetTextFont
 Tj = org.apache.pdfbox.util.operator.ShowText
 TJ = org.apache.pdfbox.util.operator.ShowTextGlyph
 TL = org.apache.pdfbox.util.operator.SetTextLeading
 Tm = org.apache.pdfbox.util.operator.SetMatrix
 Tr = org.apache.pdfbox.util.operator.SetTextRenderingMode
 Ts = org.apache.pdfbox.util.operator.SetTextRise
 Tw = org.apache.pdfbox.util.operator.SetWordSpacing
 Tz = org.apache.pdfbox.util.operator.SetHorizontalTextScaling
 w = org.apache.pdfbox.util.operator.SetLineWidth
 \' = org.apache.pdfbox.util.operator.MoveAndShow
 \ = org.apache.pdfbox.util.operator.SetMoveAndShow

 CS=org.apache.pdfbox.util.operator.SetStrokingColorSpace
 cs=org.apache.pdfbox.util.operator.SetNonStrokingColorSpace
 rg=org.apache.pdfbox.util.operator.SetNonStrokingRGBColor
 G=org.apache.pdfbox.util.operator.SetStrokingGrayColor
 g=org.apache.pdfbox.util.operator.SetNonStrokingGrayColor
 K=org.apache.pdfbox.util.operator.SetStrokingCMYKColor
 k=org.apache.pdfbox.util.operator.SetNonStrokingCMYKColor
 RG=org.apache.pdfbox.util.operator.SetStrokingRGBColor
 rg=org.apache.pdfbox.util.operator.SetNonStrokingRGBColor
 SC=org.apache.pdfbox.util.operator.SetStrokingColor
 sc=org.apache.pdfbox.util.operator.SetNonStrokingColor
 SCN=org.apache.pdfbox.util.operator.SetStrokingColor
 scn=org.apache.pdfbox.util.operator.SetNonStrokingColor

 # The following operators are not relevant to text extraction,
 # so we can silently ignore them.

 b
 B
 b*
 B*
 BDC
 BI
 BMC
 BX
 c
 d
 d0
 d1
 DP
 El
 EMC
 EX
 f
 F
 f*
 h
 i
 ID
 j
 J
 l
 m
 M
 MP
 n
 re
 ri
 s
 S
 sh
 v
 W
 W*
 y

 ===

 Tilman

 Am 27.07.2014 15:54, schrieb -A:

 Tilman;

 That is somewhat embarrassing. At one point I brought this to the mailing
 list (because of the following warning) and was told to remove that line
 because the TextStripper wasn't actually a PageDrawer. The functionality
 still worked after that, however.

 Is there a way to do this without the warning, perhaps something within
 PageDrawer?

 Thank you,
 -Aaron

 WARNING: java.lang.ClassCastException: IncrementalPDFStripper cannot be
 cast to org.apache.pdfbox.pdfviewer.PageDrawer
 java.lang.ClassCastException: IncrementalPDFStripper cannot be cast to
 org.apache.pdfbox.pdfviewer.PageDrawer
 at
 org.apache.pdfbox.util.operator.pagedrawer.AppendRectangleToPath.process(
 AppendRectangleToPath.java:46)
 at
 org.apache.pdfbox.util.PDFStreamEngine.processOperator(
 PDFStreamEngine.java:557)
 at
 org.apache.pdfbox.util.PDFStreamEngine.processSubStream(
 PDFStreamEngine.java:268)
 at
 org.apache.pdfbox.util.PDFStreamEngine.processSubStream(
 PDFStreamEngine.java:235)
 at
 org.apache.pdfbox.util.PDFStreamEngine.processStream(
 PDFStreamEngine.java:215)
 at

Custom TextStripper / PDGraphicsState Not Reading Color

2014-07-26

Thread
-A

Hello again. I've been trying to figure out this issue that has come up for
me and in my research I found someone posting on StackOverflow (
http://stackoverflow.com/questions/10844271/how-to-get-font-color-using-pdfbox)
a similar issue where they could not read any colors from a PDF. The user
posted the code and someone else took it, ran it, and reported that it
worked. The users approach was different than mine, but alas.

I'm not sure at this point what is going on. I have stepped through each
individual character and checked the PDGraphicsState object, and even when
I am looking at an open file with visibly red text (attached) the debugger
only reports DeviceGray. If I print out the ColorSpace name from the
PDGraphicsState this is what is printed - for every character.

I would appreciate if someone could perhaps run the attached text stripper
with the attached PDF file and report back if it actually prints true
instead of false, as it does for me. Since I saw this occurrence elsewhere
I'd like to rule that out - in case an IDE setting of some sort may be
causing this?

It should be noted that I began using PDFBox with 1.8.5 and had this code
working fine. Still with 1.8.5 yesterday it was failing. Upgrading to 1.8.6
yielded the same results.

If this is an actual issue I do not mind attempting to solve it if someone
may have a general idea where to point me as to prevent needless meddling
with graphics state objects. Or, if this should be reported I can do that
as well.

Thanks!

-Aaron

Previous Message:

I’ve attached an updated stripper file with the only addition being a main
function to test the class specifically.

When ran with the PDF I have also attached it indeed does not recognize the
red text.

At this point it seems that this issue is solely dependent on PDFBox. I’ll
stay tuned for some insight hopefully. If any other information is needed,
let me know!

public class IncrementalPDFStripper extends PDFTextStripper
{

/**
 * boolean to denote if a parsed file has red text in it
 */
private boolean hasRed;

/**
 * IncrementalPDFStripper constructor
 *
 * @throws java.io.IOException
 */
public IncrementalPDFStripper() throws IOException
{

super();

super.setSortByPosition(true);

this.hasRed = false;// initialize to no red

}

/**
 * Method to parse a PDF document.
 *
 * @param doc codePDDocument/code of the PDF to be checked for red.
 * @throws IOException
 */
public boolean containsRed(PDDocument doc) throws IOException
{

/**
 * Set hasRed to false in case method is ran with same object in memory
 */
this.hasRed = false;

/**
 * Get a list of pages within the document
 */
ListPDPage pages = doc.getDocumentCatalog().getAllPages();

// FOR every page in the document
for (PDPage page : pages) {
processStream(page, page.getResources(),
page.getContents().getStream()); // process the page
}

return hasRed;

}

/**
 * Overridden method with simple functionality added to set a flag
 * if a desired color is found.
 *
 * @param textPos codeTextPosition/code representing the current
position in the pages text.
 */
@Override
protected void processTextPosition(TextPosition textPos)
{
try
{
PDGraphicsState graphicsState = getGraphicsState();

// IF the current text contains RED
if (graphicsState.getNonStrokingColor().getJavaColor().getRed() ==
255)
{
this.hasRed = true;
}

}
catch (IOException e)
{
throw new RuntimeException(e);
}

}

public static void main(String[] args)
{
try
{
PDDocument doc = PDDocument.load(args[0]);

IncrementalPDFStripper stripper = new IncrementalPDFStripper();

System.out.println(stripper.containsRed(doc));
}
catch (IOException e)
{
e.printStackTrace();
}
}

}

Re: Custom TextStripper / PDGraphicsState Not Reading Color

2014-07-26

Thread
Tilman Hausherr

Hi,

Please upload the PDF somewhere and post the URL, PDF files are removed
from the mailing list.

Tilman

Am 27.07.2014 02:35, schrieb -A:
Hello again. I've been trying to figure out this issue that has come
up for me and in my research I found someone posting on StackOverflow
(http://stackoverflow.com/questions/10844271/how-to-get-font-color-using-pdfbox)
a similar issue where they could not read any colors from a PDF. The
user posted the code and someone else took it, ran it, and reported
that it worked. The users approach was different than mine, but alas.

I'm not sure at this point what is going on. I have stepped through
each individual character and checked the PDGraphicsState object, and
even when I am looking at an open file with visibly red text
(attached) the debugger only reports DeviceGray. If I print out the
ColorSpace name from the PDGraphicsState this is what is printed - for
every character.

I would appreciate if someone could perhaps run the attached text
stripper with the attached PDF file and report back if it actually
prints trueinstead of false, as it does for me. Since I saw this
occurrence elsewhere I'd like to rule that out - in case an IDE
setting of some sort may be causing this?

It should be noted that I began using PDFBox with 1.8.5 and had this
code working fine. Still with 1.8.5 yesterday it was failing.
Upgrading to 1.8.6 yielded the same results.

If this is an actual issue I do not mind attempting to solve it if
someone may have a general idea where to point me as to prevent
needless meddling with graphics state objects. Or, if this should be
reported I can do that as well.

Thanks!

-Aaron

Previous Message:
*
*
*
*
I've attached an updated stripper file with the only addition being a
main function to test the class specifically.

When ran with the PDF I have also attached it indeed does not
recognize the red text.

At this point it seems that this issue is solely dependent on PDFBox.
I'll stay tuned for some insight hopefully. If any other information
is needed, let me know!

Re: Custom TextStripper / PDGraphicsState Not Reading Color

2014-07-26

Thread
-A

No problem, and done.

They can be found here:

Java File: http://www.hrtmn.net/Misc/IncrementalPDFStripper.java
PDF: http://www.hrtmn.net/Misc/test.pdf

The attached Java file should print true when ran on the test pdf, but only
ever returns false for me.

On Sat, Jul 26, 2014 at 11:43 PM, Tilman Hausherr thaush...@t-online.de
wrote:

 Hi,

 Please upload the PDF somewhere and post the URL, PDF files are removed
 from the mailing list.

 Tilman

 Am 27.07.2014 02:35, schrieb -A:

 Hello again. I've been trying to figure out this issue that has come up
 for me and in my research I found someone posting on StackOverflow (
 http://stackoverflow.com/questions/10844271/how-to-get-
 font-color-using-pdfbox) a similar issue where they could not read any
 colors from a PDF. The user posted the code and someone else took it, ran
 it, and reported that it worked. The users approach was different than
 mine, but alas.

 I'm not sure at this point what is going on. I have stepped through each
 individual character and checked the PDGraphicsState object, and even when
 I am looking at an open file with visibly red text (attached) the debugger
 only reports DeviceGray. If I print out the ColorSpace name from the
 PDGraphicsState this is what is printed - for every character.

 I would appreciate if someone could perhaps run the attached text
 stripper with the attached PDF file and report back if it actually prints
 trueinstead of false, as it does for me. Since I saw this occurrence
 elsewhere I'd like to rule that out - in case an IDE setting of some sort
 may be causing this?

 It should be noted that I began using PDFBox with 1.8.5 and had this code
 working fine. Still with 1.8.5 yesterday it was failing. Upgrading to 1.8.6
 yielded the same results.

 If this is an actual issue I do not mind attempting to solve it if
 someone may have a general idea where to point me as to prevent needless
 meddling with graphics state objects. Or, if this should be reported I can
 do that as well.

 Thanks!

 -Aaron

 Previous Message:
 *
 *
 *

 *
 I've attached an updated stripper file with the only addition being a
 main function to test the class specifically.

 When ran with the PDF I have also attached it indeed does not recognize
 the red text.

 At this point it seems that this issue is solely dependent on PDFBox.
 I'll stay tuned for some insight hopefully. If any other information is
 needed, let me know!

 19 matches

	Advanced search

Search the list

 Site Navigation

 	The Mail Archive home
	
 dev - all messages
	
 dev - about the list
	Expand

 				Mail list logo

	 	 Footer information

 	The Mail Archive home
	Add your mailing list
	FAQ
	Support
	Privacy

