---
 cpukit/score/include/sys/_ffcounter.h |   42 +
 cpukit/score/include/sys/timeffc.h    |  389 +++++++
 cpukit/score/include/sys/timepps.h    |  249 ++++
 cpukit/score/include/sys/timetc.h     |   89 ++
 cpukit/score/include/sys/timex.h      |  171 +++
 cpukit/score/src/kern_tc.c            | 2039 +++++++++++++++++++++++++++++++++
 cpukit/score/src/opt_compat.h         |    0
 cpukit/score/src/opt_ffclock.h        |    0
 cpukit/score/src/opt_ntp.h            |    0
 9 files changed, 2979 insertions(+)
 create mode 100644 cpukit/score/include/sys/_ffcounter.h
 create mode 100644 cpukit/score/include/sys/timeffc.h
 create mode 100644 cpukit/score/include/sys/timepps.h
 create mode 100644 cpukit/score/include/sys/timetc.h
 create mode 100644 cpukit/score/include/sys/timex.h
 create mode 100644 cpukit/score/src/kern_tc.c
 create mode 100644 cpukit/score/src/opt_compat.h
 create mode 100644 cpukit/score/src/opt_ffclock.h
 create mode 100644 cpukit/score/src/opt_ntp.h

diff --git a/cpukit/score/include/sys/_ffcounter.h 
b/cpukit/score/include/sys/_ffcounter.h
new file mode 100644
index 0000000..0d5864a
--- /dev/null
+++ b/cpukit/score/include/sys/_ffcounter.h
@@ -0,0 +1,42 @@
+/*-
+ * Copyright (c) 2011 The University of Melbourne
+ * All rights reserved.
+ *
+ * This software was developed by Julien Ridoux at the University of Melbourne
+ * under sponsorship from the FreeBSD Foundation.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * $FreeBSD$
+ */
+
+#ifndef _SYS__FFCOUNTER_H_
+#define _SYS__FFCOUNTER_H_
+
+/*
+ * The feed-forward clock counter. The fundamental element of a feed-forward
+ * clock is a wide monotonically increasing counter that accumulates at the 
same
+ * rate as the selected timecounter.
+ */
+typedef uint64_t ffcounter;
+
+#endif /* _SYS__FFCOUNTER_H_ */
diff --git a/cpukit/score/include/sys/timeffc.h 
b/cpukit/score/include/sys/timeffc.h
new file mode 100644
index 0000000..3bda5d4
--- /dev/null
+++ b/cpukit/score/include/sys/timeffc.h
@@ -0,0 +1,389 @@
+/*-
+ * Copyright (c) 2011 The University of Melbourne
+ * All rights reserved.
+ *
+ * This software was developed by Julien Ridoux at the University of Melbourne
+ * under sponsorship from the FreeBSD Foundation.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * $FreeBSD$
+ */
+
+#ifndef _SYS_TIMEFF_H_
+#define _SYS_TIMEFF_H_
+
+#include <sys/_ffcounter.h>
+
+/*
+ * Feed-forward clock estimate
+ * Holds time mark as a ffcounter and conversion to bintime based on current
+ * timecounter period and offset estimate passed by the synchronization daemon.
+ * Provides time of last daemon update, clock status and bound on error.
+ */
+struct ffclock_estimate {
+       struct bintime  update_time;    /* Time of last estimates update. */
+       ffcounter       update_ffcount; /* Counter value at last update. */
+       ffcounter       leapsec_next;   /* Counter value of next leap second. */
+       uint64_t        period;         /* Estimate of counter period. */
+       uint32_t        errb_abs;       /* Bound on absolute clock error [ns]. 
*/
+       uint32_t        errb_rate;      /* Bound on counter rate error [ps/s]. 
*/
+       uint32_t        status;         /* Clock status. */
+       int16_t         leapsec_total;  /* All leap seconds seen so far. */
+       int8_t          leapsec;        /* Next leap second (in {-1,0,1}). */
+};
+
+#if __BSD_VISIBLE
+#ifdef _KERNEL
+
+/* Define the kern.sysclock sysctl tree. */
+SYSCTL_DECL(_kern_sysclock);
+
+/* Define the kern.sysclock.ffclock sysctl tree. */
+SYSCTL_DECL(_kern_sysclock_ffclock);
+
+/*
+ * Index into the sysclocks array for obtaining the ASCII name of a particular
+ * sysclock.
+ */
+#define        SYSCLOCK_FBCK   0
+#define        SYSCLOCK_FFWD   1
+extern int sysclock_active;
+
+/*
+ * Parameters of counter characterisation required by feed-forward algorithms.
+ */
+#define        FFCLOCK_SKM_SCALE       1024
+
+/*
+ * Feed-forward clock status
+ */
+#define        FFCLOCK_STA_UNSYNC      1
+#define        FFCLOCK_STA_WARMUP      2
+
+/*
+ * Flags for use by sysclock_snap2bintime() and various ffclock_ functions to
+ * control how the timecounter hardware is read and how the hardware snapshot 
is
+ * converted into absolute time.
+ * {FB|FF}CLOCK_FAST:  Do not read the hardware counter, instead using the
+ *                     value at last tick. The time returned has a resolution
+ *                     of the kernel tick timer (1/hz [s]).
+ * FFCLOCK_LERP:       Linear interpolation of ffclock time to guarantee
+ *                     monotonic time.
+ * FFCLOCK_LEAPSEC:    Include leap seconds.
+ * {FB|FF}CLOCK_UPTIME:        Time stamp should be relative to system boot, 
not epoch.
+ */
+#define        FFCLOCK_FAST            0x00000001
+#define        FFCLOCK_LERP            0x00000002
+#define        FFCLOCK_LEAPSEC         0x00000004
+#define        FFCLOCK_UPTIME          0x00000008
+#define        FFCLOCK_MASK            0x0000ffff
+
+#define        FBCLOCK_FAST            0x00010000 /* Currently unused. */
+#define        FBCLOCK_UPTIME          0x00020000
+#define        FBCLOCK_MASK            0xffff0000
+
+/*
+ * Feedback clock specific info structure. The feedback clock's estimation of
+ * clock error is an absolute figure determined by the NTP algorithm. The 
status
+ * is determined by the userland daemon.
+ */
+struct fbclock_info {
+       struct bintime          error;
+       struct bintime          tick_time;
+       uint64_t                th_scale;
+       int                     status;
+};
+
+/*
+ * Feed-forward clock specific info structure. The feed-forward clock's
+ * estimation of clock error is an upper bound, which although potentially
+ * looser than the feedback clock equivalent, is much more reliable. The status
+ * is determined by the userland daemon.
+ */
+struct ffclock_info {
+       struct bintime          error;
+       struct bintime          tick_time;
+       struct bintime          tick_time_lerp;
+       uint64_t                period;
+       uint64_t                period_lerp;
+       int                     leapsec_adjustment;
+       int                     status;
+};
+
+/*
+ * Snapshot of system clocks and related information. Holds time read from each
+ * clock based on a single read of the active hardware timecounter, as well as
+ * respective clock information such as error estimates and the ffcounter value
+ * at the time of the read.
+ */
+struct sysclock_snap {
+       struct fbclock_info     fb_info;
+       struct ffclock_info     ff_info;
+       ffcounter               ffcount;
+       unsigned int            delta;
+       int                     sysclock_active;
+};
+
+/* Take a snapshot of the system clocks and related information. */
+void sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast);
+
+/* Convert a timestamp from the selected system clock into bintime. */
+int sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt,
+    int whichclock, uint32_t flags);
+
+/* Resets feed-forward clock from RTC */
+void ffclock_reset_clock(struct timespec *ts);
+
+/*
+ * Return the current value of the feed-forward clock counter. Essential to
+ * measure time interval in counter units. If a fast timecounter is used by the
+ * system, may also allow fast but accurate timestamping.
+ */
+void ffclock_read_counter(ffcounter *ffcount);
+
+/*
+ * Retrieve feed-forward counter value and time of last kernel tick. This
+ * accepts the FFCLOCK_LERP flag.
+ */
+void ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags);
+
+/*
+ * Low level routines to convert a counter timestamp into absolute time and a
+ * counter timestamp interval into an interval in seconds. The absolute time
+ * conversion accepts the FFCLOCK_LERP flag.
+ */
+void ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t 
flags);
+void ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt);
+
+/*
+ * Feed-forward clock routines.
+ *
+ * These functions rely on the timecounters and ffclock_estimates stored in
+ * fftimehands. Note that the error_bound parameter is not the error of the
+ * clock but an upper bound on the error of the absolute time or time interval
+ * returned.
+ *
+ * ffclock_abstime(): retrieves current time as counter value and convert this
+ *     timestamp in seconds. The value (in seconds) of the converted timestamp
+ *     depends on the flags passed: for a given counter value, different
+ *     conversions are possible. Different clock models can be selected by
+ *     combining flags (for example (FFCLOCK_LERP|FFCLOCK_UPTIME) produces
+ *     linearly interpolated uptime).
+ * ffclock_difftime(): computes a time interval in seconds based on an interval
+ *     measured in ffcounter units. This should be the preferred way to measure
+ *     small time intervals very accurately.
+ */
+void ffclock_abstime(ffcounter *ffcount, struct bintime *bt,
+    struct bintime *error_bound, uint32_t flags);
+void ffclock_difftime(ffcounter ffdelta, struct bintime *bt,
+    struct bintime *error_bound);
+
+/*
+ * Wrapper routines to return current absolute time using the feed-forward
+ * clock. These functions are named after those defined in <sys/time.h>, which
+ * contains a description of the original ones.
+ */
+void ffclock_bintime(struct bintime *bt);
+void ffclock_nanotime(struct timespec *tsp);
+void ffclock_microtime(struct timeval *tvp);
+
+void ffclock_getbintime(struct bintime *bt);
+void ffclock_getnanotime(struct timespec *tsp);
+void ffclock_getmicrotime(struct timeval *tvp);
+
+void ffclock_binuptime(struct bintime *bt);
+void ffclock_nanouptime(struct timespec *tsp);
+void ffclock_microuptime(struct timeval *tvp);
+
+void ffclock_getbinuptime(struct bintime *bt);
+void ffclock_getnanouptime(struct timespec *tsp);
+void ffclock_getmicrouptime(struct timeval *tvp);
+
+/*
+ * Wrapper routines to convert a time interval specified in ffcounter units 
into
+ * seconds using the current feed-forward clock estimates.
+ */
+void ffclock_bindifftime(ffcounter ffdelta, struct bintime *bt);
+void ffclock_nanodifftime(ffcounter ffdelta, struct timespec *tsp);
+void ffclock_microdifftime(ffcounter ffdelta, struct timeval *tvp);
+
+/*
+ * When FFCLOCK is enabled in the kernel, [get]{bin,nano,micro}[up]time() 
become
+ * wrappers around equivalent feedback or feed-forward functions. Provide 
access
+ * outside of kern_tc.c to the feedback clock equivalent functions for
+ * specialised use i.e. these are not for general consumption.
+ */
+void fbclock_bintime(struct bintime *bt);
+void fbclock_nanotime(struct timespec *tsp);
+void fbclock_microtime(struct timeval *tvp);
+
+void fbclock_getbintime(struct bintime *bt);
+void fbclock_getnanotime(struct timespec *tsp);
+void fbclock_getmicrotime(struct timeval *tvp);
+
+void fbclock_binuptime(struct bintime *bt);
+void fbclock_nanouptime(struct timespec *tsp);
+void fbclock_microuptime(struct timeval *tvp);
+
+void fbclock_getbinuptime(struct bintime *bt);
+void fbclock_getnanouptime(struct timespec *tsp);
+void fbclock_getmicrouptime(struct timeval *tvp);
+
+/*
+ * Public system clock wrapper API which allows consumers to select which clock
+ * to obtain time from, independent of the current default system clock. These
+ * wrappers should be used instead of directly calling the underlying fbclock_
+ * or ffclock_ functions.
+ */
+static inline void
+bintime_fromclock(struct bintime *bt, int whichclock)
+{
+
+       if (whichclock == SYSCLOCK_FFWD)
+               ffclock_bintime(bt);
+       else
+               fbclock_bintime(bt);
+}
+
+static inline void
+nanotime_fromclock(struct timespec *tsp, int whichclock)
+{
+
+       if (whichclock == SYSCLOCK_FFWD)
+               ffclock_nanotime(tsp);
+       else
+               fbclock_nanotime(tsp);
+}
+
+static inline void
+microtime_fromclock(struct timeval *tvp, int whichclock)
+{
+
+       if (whichclock == SYSCLOCK_FFWD)
+               ffclock_microtime(tvp);
+       else
+               fbclock_microtime(tvp);
+}
+
+static inline void
+getbintime_fromclock(struct bintime *bt, int whichclock)
+{
+
+       if (whichclock == SYSCLOCK_FFWD)
+               ffclock_getbintime(bt);
+       else
+               fbclock_getbintime(bt);
+}
+
+static inline void
+getnanotime_fromclock(struct timespec *tsp, int whichclock)
+{
+
+       if (whichclock == SYSCLOCK_FFWD)
+               ffclock_getnanotime(tsp);
+       else
+               fbclock_getnanotime(tsp);
+}
+
+static inline void
+getmicrotime_fromclock(struct timeval *tvp, int whichclock)
+{
+
+       if (whichclock == SYSCLOCK_FFWD)
+               ffclock_getmicrotime(tvp);
+       else
+               fbclock_getmicrotime(tvp);
+}
+
+static inline void
+binuptime_fromclock(struct bintime *bt, int whichclock)
+{
+
+       if (whichclock == SYSCLOCK_FFWD)
+               ffclock_binuptime(bt);
+       else
+               fbclock_binuptime(bt);
+}
+
+static inline void
+nanouptime_fromclock(struct timespec *tsp, int whichclock)
+{
+
+       if (whichclock == SYSCLOCK_FFWD)
+               ffclock_nanouptime(tsp);
+       else
+               fbclock_nanouptime(tsp);
+}
+
+static inline void
+microuptime_fromclock(struct timeval *tvp, int whichclock)
+{
+
+       if (whichclock == SYSCLOCK_FFWD)
+               ffclock_microuptime(tvp);
+       else
+               fbclock_microuptime(tvp);
+}
+
+static inline void
+getbinuptime_fromclock(struct bintime *bt, int whichclock)
+{
+
+       if (whichclock == SYSCLOCK_FFWD)
+               ffclock_getbinuptime(bt);
+       else
+               fbclock_getbinuptime(bt);
+}
+
+static inline void
+getnanouptime_fromclock(struct timespec *tsp, int whichclock)
+{
+
+       if (whichclock == SYSCLOCK_FFWD)
+               ffclock_getnanouptime(tsp);
+       else
+               fbclock_getnanouptime(tsp);
+}
+
+static inline void
+getmicrouptime_fromclock(struct timeval *tvp, int whichclock)
+{
+
+       if (whichclock == SYSCLOCK_FFWD)
+               ffclock_getmicrouptime(tvp);
+       else
+               fbclock_getmicrouptime(tvp);
+}
+
+#else /* !_KERNEL */
+
+/* Feed-Forward Clock system calls. */
+__BEGIN_DECLS
+int ffclock_getcounter(ffcounter *ffcount);
+int ffclock_getestimate(struct ffclock_estimate *cest);
+int ffclock_setestimate(struct ffclock_estimate *cest);
+__END_DECLS
+
+#endif /* _KERNEL */
+#endif /* __BSD_VISIBLE */
+#endif /* _SYS_TIMEFF_H_ */
diff --git a/cpukit/score/include/sys/timepps.h 
b/cpukit/score/include/sys/timepps.h
new file mode 100644
index 0000000..8083f33
--- /dev/null
+++ b/cpukit/score/include/sys/timepps.h
@@ -0,0 +1,249 @@
+/*-
+ * ----------------------------------------------------------------------------
+ * "THE BEER-WARE LICENSE" (Revision 42):
+ * <p...@freebsd.org> wrote this file.  As long as you retain this notice you
+ * can do whatever you want with this stuff. If we meet some day, and you think
+ * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
+ * ----------------------------------------------------------------------------
+ *
+ * Copyright (c) 2011 The FreeBSD Foundation
+ * All rights reserved.
+ *
+ * Portions of this software were developed by Julien Ridoux at the University
+ * of Melbourne under sponsorship from the FreeBSD Foundation.
+ *
+ * $FreeBSD$
+ *
+ * The is a FreeBSD version of the RFC 2783 API for Pulse Per Second 
+ * timing interfaces.  
+ */
+
+#ifndef _SYS_TIMEPPS_H_
+#define _SYS_TIMEPPS_H_
+
+#include <sys/_ffcounter.h>
+#include <sys/ioccom.h>
+#include <sys/time.h>
+
+#define PPS_API_VERS_1 1
+
+typedef int pps_handle_t;      
+
+typedef unsigned pps_seq_t;
+
+typedef struct ntp_fp {
+       unsigned int    integral;
+       unsigned int    fractional;
+} ntp_fp_t;
+
+typedef union pps_timeu {
+       struct timespec tspec;
+       ntp_fp_t        ntpfp;
+       unsigned long   longpad[3];
+} pps_timeu_t;
+
+typedef struct {
+       pps_seq_t       assert_sequence;        /* assert event seq # */
+       pps_seq_t       clear_sequence;         /* clear event seq # */
+       pps_timeu_t     assert_tu;
+       pps_timeu_t     clear_tu;
+       int             current_mode;           /* current mode bits */
+} pps_info_t;
+
+typedef struct {
+       pps_seq_t       assert_sequence;        /* assert event seq # */
+       pps_seq_t       clear_sequence;         /* clear event seq # */
+       pps_timeu_t     assert_tu;
+       pps_timeu_t     clear_tu;
+       ffcounter       assert_ffcount;         /* ffcounter on assert event */
+       ffcounter       clear_ffcount;          /* ffcounter on clear event */
+       int             current_mode;           /* current mode bits */
+} pps_info_ffc_t;
+
+#define assert_timestamp        assert_tu.tspec
+#define clear_timestamp         clear_tu.tspec
+
+#define assert_timestamp_ntpfp  assert_tu.ntpfp
+#define clear_timestamp_ntpfp   clear_tu.ntpfp
+
+typedef struct {
+       int api_version;                        /* API version # */
+       int mode;                               /* mode bits */
+       pps_timeu_t assert_off_tu;
+       pps_timeu_t clear_off_tu;
+} pps_params_t;
+
+#define assert_offset   assert_off_tu.tspec
+#define clear_offset    clear_off_tu.tspec
+
+#define assert_offset_ntpfp     assert_off_tu.ntpfp
+#define clear_offset_ntpfp      clear_off_tu.ntpfp
+
+
+#define PPS_CAPTUREASSERT      0x01
+#define PPS_CAPTURECLEAR       0x02
+#define PPS_CAPTUREBOTH                0x03
+
+#define PPS_OFFSETASSERT       0x10
+#define PPS_OFFSETCLEAR                0x20
+
+#define PPS_ECHOASSERT         0x40
+#define PPS_ECHOCLEAR          0x80
+
+#define PPS_CANWAIT            0x100
+#define PPS_CANPOLL            0x200
+
+#define PPS_TSFMT_TSPEC                0x1000
+#define PPS_TSFMT_NTPFP                0x2000
+
+#define        PPS_TSCLK_FBCK          0x10000
+#define        PPS_TSCLK_FFWD          0x20000
+#define        PPS_TSCLK_MASK          0x30000
+
+#define PPS_KC_HARDPPS         0
+#define PPS_KC_HARDPPS_PLL     1
+#define PPS_KC_HARDPPS_FLL     2
+
+struct pps_fetch_args {
+       int tsformat;
+       pps_info_t      pps_info_buf;
+       struct timespec timeout;
+};
+
+struct pps_fetch_ffc_args {
+       int             tsformat;
+       pps_info_ffc_t  pps_info_buf_ffc;
+       struct timespec timeout;
+};
+
+struct pps_kcbind_args {
+       int kernel_consumer;
+       int edge;
+       int tsformat;
+};
+
+#define PPS_IOC_CREATE         _IO('1', 1)
+#define PPS_IOC_DESTROY                _IO('1', 2)
+#define PPS_IOC_SETPARAMS      _IOW('1', 3, pps_params_t)
+#define PPS_IOC_GETPARAMS      _IOR('1', 4, pps_params_t)
+#define PPS_IOC_GETCAP         _IOR('1', 5, int)
+#define PPS_IOC_FETCH          _IOWR('1', 6, struct pps_fetch_args)
+#define PPS_IOC_KCBIND         _IOW('1', 7, struct pps_kcbind_args)
+#define        PPS_IOC_FETCH_FFCOUNTER _IOWR('1', 8, struct pps_fetch_ffc_args)
+
+#ifdef _KERNEL
+
+struct pps_state {
+       /* Capture information. */
+       struct timehands *capth;
+       struct fftimehands *capffth;
+       unsigned        capgen;
+       unsigned        capcount;
+
+       /* State information. */
+       pps_params_t    ppsparam;
+       pps_info_t      ppsinfo;
+       pps_info_ffc_t  ppsinfo_ffc;
+       int             kcmode;
+       int             ppscap;
+       struct timecounter *ppstc;
+       unsigned        ppscount[3];
+};
+
+void pps_capture(struct pps_state *pps);
+void pps_event(struct pps_state *pps, int event);
+void pps_init(struct pps_state *pps);
+int pps_ioctl(unsigned long cmd, caddr_t data, struct pps_state *pps);
+void hardpps(struct timespec *tsp, long nsec);
+
+#else /* !_KERNEL */
+
+static __inline int
+time_pps_create(int filedes, pps_handle_t *handle)
+{
+       int error;
+
+       *handle = -1;
+       error = ioctl(filedes, PPS_IOC_CREATE, 0);
+       if (error < 0) 
+               return (-1);
+       *handle = filedes;
+       return (0);
+}
+
+static __inline int
+time_pps_destroy(pps_handle_t handle)
+{
+       return (ioctl(handle, PPS_IOC_DESTROY, 0));
+}
+
+static __inline int
+time_pps_setparams(pps_handle_t handle, const pps_params_t *ppsparams)
+{
+       return (ioctl(handle, PPS_IOC_SETPARAMS, ppsparams));
+}
+
+static __inline int
+time_pps_getparams(pps_handle_t handle, pps_params_t *ppsparams)
+{
+       return (ioctl(handle, PPS_IOC_GETPARAMS, ppsparams));
+}
+
+static __inline int 
+time_pps_getcap(pps_handle_t handle, int *mode)
+{
+       return (ioctl(handle, PPS_IOC_GETCAP, mode));
+}
+
+static __inline int
+time_pps_fetch(pps_handle_t handle, const int tsformat,
+       pps_info_t *ppsinfobuf, const struct timespec *timeout)
+{
+       int error;
+       struct pps_fetch_args arg;
+
+       arg.tsformat = tsformat;
+       if (timeout == NULL) {
+               arg.timeout.tv_sec = -1;
+               arg.timeout.tv_nsec = -1;
+       } else
+               arg.timeout = *timeout;
+       error = ioctl(handle, PPS_IOC_FETCH, &arg);
+       *ppsinfobuf = arg.pps_info_buf;
+       return (error);
+}
+
+static __inline int
+time_pps_fetch_ffc(pps_handle_t handle, const int tsformat,
+       pps_info_ffc_t *ppsinfobuf, const struct timespec *timeout)
+{
+       struct pps_fetch_ffc_args arg;
+       int error;
+
+       arg.tsformat = tsformat;
+       if (timeout == NULL) {
+               arg.timeout.tv_sec = -1;
+               arg.timeout.tv_nsec = -1;
+       } else {
+               arg.timeout = *timeout;
+       }
+       error = ioctl(handle, PPS_IOC_FETCH_FFCOUNTER, &arg);
+       *ppsinfobuf = arg.pps_info_buf_ffc;
+       return (error);
+}
+
+static __inline int
+time_pps_kcbind(pps_handle_t handle, const int kernel_consumer,
+       const int edge, const int tsformat)
+{
+       struct pps_kcbind_args arg;
+
+       arg.kernel_consumer = kernel_consumer;
+       arg.edge = edge;
+       arg.tsformat = tsformat;
+       return (ioctl(handle, PPS_IOC_KCBIND, &arg));
+}
+
+#endif /* KERNEL */
+
+#endif /* !_SYS_TIMEPPS_H_ */
diff --git a/cpukit/score/include/sys/timetc.h 
b/cpukit/score/include/sys/timetc.h
new file mode 100644
index 0000000..e68e327
--- /dev/null
+++ b/cpukit/score/include/sys/timetc.h
@@ -0,0 +1,89 @@
+/*-
+ * ----------------------------------------------------------------------------
+ * "THE BEER-WARE LICENSE" (Revision 42):
+ * <p...@freebsd.org> wrote this file.  As long as you retain this notice you
+ * can do whatever you want with this stuff. If we meet some day, and you think
+ * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
+ * ----------------------------------------------------------------------------
+ *
+ * $FreeBSD$
+ */
+
+#ifndef _SYS_TIMETC_H_
+#define        _SYS_TIMETC_H_
+
+#ifndef _KERNEL
+#error "no user-serviceable parts inside"
+#endif
+
+/*-
+ * `struct timecounter' is the interface between the hardware which implements
+ * a timecounter and the MI code which uses this to keep track of time.
+ *
+ * A timecounter is a binary counter which has two properties:
+ *    * it runs at a fixed, known frequency.
+ *    * it has sufficient bits to not roll over in less than approximately
+ *      max(2 msec, 2/HZ seconds).  (The value 2 here is really 1 + delta,
+ *      for some indeterminate value of delta.)
+ */
+
+struct timecounter;
+typedef u_int timecounter_get_t(struct timecounter *);
+typedef void timecounter_pps_t(struct timecounter *);
+
+struct timecounter {
+       timecounter_get_t       *tc_get_timecount;
+               /*
+                * This function reads the counter.  It is not required to
+                * mask any unimplemented bits out, as long as they are
+                * constant.
+                */
+       timecounter_pps_t       *tc_poll_pps;
+               /*
+                * This function is optional.  It will be called whenever the
+                * timecounter is rewound, and is intended to check for PPS
+                * events.  Normal hardware does not need it but timecounters
+                * which latch PPS in hardware (like sys/pci/xrpu.c) do.
+                */
+       u_int                   tc_counter_mask;
+               /* This mask should mask off any unimplemented bits. */
+       uint64_t                tc_frequency;
+               /* Frequency of the counter in Hz. */
+       char                    *tc_name;
+               /* Name of the timecounter. */
+       int                     tc_quality;
+               /*
+                * Used to determine if this timecounter is better than
+                * another timecounter higher means better.  Negative
+                * means "only use at explicit request".
+                */
+       u_int                   tc_flags;
+#define        TC_FLAGS_C2STOP         1       /* Timer dies in C2+. */
+#define        TC_FLAGS_SUSPEND_SAFE   2       /*
+                                        * Timer functional across
+                                        * suspend/resume.
+                                        */
+
+       void                    *tc_priv;
+               /* Pointer to the timecounter's private parts. */
+       struct timecounter      *tc_next;
+               /* Pointer to the next timecounter. */
+};
+
+extern struct timecounter *timecounter;
+extern int tc_min_ticktock_freq; /*
+                                 * Minimal tc_ticktock() call frequency,
+                                 * required to handle counter wraps.
+                                 */
+
+u_int64_t tc_getfrequency(void);
+void   tc_init(struct timecounter *tc);
+void   tc_setclock(struct timespec *ts);
+void   tc_ticktock(int cnt);
+void   cpu_tick_calibration(void);
+
+#ifdef SYSCTL_DECL
+SYSCTL_DECL(_kern_timecounter);
+#endif
+
+#endif /* !_SYS_TIMETC_H_ */
diff --git a/cpukit/score/include/sys/timex.h b/cpukit/score/include/sys/timex.h
new file mode 100644
index 0000000..4b75fcc
--- /dev/null
+++ b/cpukit/score/include/sys/timex.h
@@ -0,0 +1,171 @@
+/*-
+ ***********************************************************************
+ *                                                                    *
+ * Copyright (c) David L. Mills 1993-2001                             *
+ * Copyright (c) Poul-Henning Kamp 2000-2001                           *
+ *                                                                    *
+ * Permission to use, copy, modify, and distribute this software and   *
+ * its documentation for any purpose and without fee is hereby        *
+ * granted, provided that the above copyright notice appears in all    *
+ * copies and that both the copyright notice and this permission       *
+ * notice appear in supporting documentation, and that the name        *
+ * University of Delaware not be used in advertising or publicity      *
+ * pertaining to distribution of the software without specific,               *
+ * written prior permission. The University of Delaware makes no       *
+ * representations about the suitability this software for any        *
+ * purpose. It is provided "as is" without express or implied         *
+ * warranty.                                                          *
+ *                                                                    *
+ ***********************************************************************
+ *
+ * $FreeBSD$
+ *
+ * This header file defines the Network Time Protocol (NTP) interfaces
+ * for user and daemon application programs.
+ *
+ * This file was originally created 17 Sep 93 by David L. Mills, Professor
+ * of University of Delaware, building on work which had already been ongoing
+ * for a decade and a half at that point in time.
+ *
+ * In 2000 the APIs got a upgrade from microseconds to nanoseconds,
+ * a joint work between Poul-Henning Kamp and David L. Mills.
+ *
+ */
+
+#ifndef _SYS_TIMEX_H_
+#define _SYS_TIMEX_H_ 1
+
+#define NTP_API                4               /* NTP API version */
+
+#ifdef __FreeBSD__
+#include <sys/_timespec.h>
+#endif /* __FreeBSD__ */
+
+/*
+ * The following defines establish the performance envelope of the
+ * kernel discipline loop. Phase or frequency errors greater than
+ * NAXPHASE or MAXFREQ are clamped to these maxima. For update intervals
+ * less than MINSEC, the loop always operates in PLL mode; while, for
+ * update intervals greater than MAXSEC, the loop always operates in FLL
+ * mode. Between these two limits the operating mode is selected by the
+ * STA_FLL bit in the status word.
+ */
+
+#define MAXPHASE       500000000L      /* max phase error (ns) */
+#define MAXFREQ                500000L         /* max freq error (ns/s) */
+#define MINSEC         256             /* min FLL update interval (s) */
+#define MAXSEC         2048            /* max PLL update interval (s) */
+#define NANOSECOND     1000000000L     /* nanoseconds in one second */
+#define SCALE_PPM      (65536 / 1000)  /* crude ns/s to scaled PPM */
+#define MAXTC          10              /* max time constant */
+
+/*
+ * Control mode codes (timex.modes)
+ */
+#define MOD_OFFSET     0x0001          /* set time offset */
+#define MOD_FREQUENCY  0x0002          /* set frequency offset */
+#define MOD_MAXERROR   0x0004          /* set maximum time error */
+#define MOD_ESTERROR   0x0008          /* set estimated time error */
+#define MOD_STATUS     0x0010          /* set clock status bits */
+#define MOD_TIMECONST  0x0020          /* set PLL time constant */
+#define MOD_PPSMAX     0x0040          /* set PPS maximum averaging time */
+#define MOD_TAI                0x0080          /* set TAI offset */
+#define        MOD_MICRO       0x1000          /* select microsecond 
resolution */
+#define        MOD_NANO        0x2000          /* select nanosecond resolution 
*/
+#define MOD_CLKB       0x4000          /* select clock B */
+#define MOD_CLKA       0x8000          /* select clock A */
+
+/*
+ * Status codes (timex.status)
+ */
+#define STA_PLL                0x0001          /* enable PLL updates (rw) */
+#define STA_PPSFREQ    0x0002          /* enable PPS freq discipline (rw) */
+#define STA_PPSTIME    0x0004          /* enable PPS time discipline (rw) */
+#define STA_FLL                0x0008          /* enable FLL mode (rw) */
+#define STA_INS                0x0010          /* insert leap (rw) */
+#define STA_DEL                0x0020          /* delete leap (rw) */
+#define STA_UNSYNC     0x0040          /* clock unsynchronized (rw) */
+#define STA_FREQHOLD   0x0080          /* hold frequency (rw) */
+#define STA_PPSSIGNAL  0x0100          /* PPS signal present (ro) */
+#define STA_PPSJITTER  0x0200          /* PPS signal jitter exceeded (ro) */
+#define STA_PPSWANDER  0x0400          /* PPS signal wander exceeded (ro) */
+#define STA_PPSERROR   0x0800          /* PPS signal calibration error (ro) */
+#define STA_CLOCKERR   0x1000          /* clock hardware fault (ro) */
+#define STA_NANO       0x2000          /* resolution (0 = us, 1 = ns) (ro) */
+#define STA_MODE       0x4000          /* mode (0 = PLL, 1 = FLL) (ro) */
+#define STA_CLK                0x8000          /* clock source (0 = A, 1 = B) 
(ro) */
+
+#define STA_RONLY (STA_PPSSIGNAL | STA_PPSJITTER | STA_PPSWANDER | \
+    STA_PPSERROR | STA_CLOCKERR | STA_NANO | STA_MODE | STA_CLK)
+
+/*
+ * Clock states (ntptimeval.time_state)
+ */
+#define TIME_OK                0               /* no leap second warning */
+#define TIME_INS       1               /* insert leap second warning */
+#define TIME_DEL       2               /* delete leap second warning */
+#define TIME_OOP       3               /* leap second in progress */
+#define TIME_WAIT      4               /* leap second has occured */
+#define TIME_ERROR     5               /* error (see status word) */
+
+/*
+ * NTP user interface -- ntp_gettime(2) - used to read kernel clock values
+ */
+struct ntptimeval {
+       struct timespec time;           /* current time (ns) (ro) */
+       long maxerror;                  /* maximum error (us) (ro) */
+       long esterror;                  /* estimated error (us) (ro) */
+       long tai;                       /* TAI offset */
+       int time_state;                 /* time status */
+};
+
+/*
+ * NTP daemon interface -- ntp_adjtime(2) -- used to discipline CPU clock
+ * oscillator and control/determine status.
+ *
+ * Note: The offset, precision and jitter members are in microseconds if
+ * STA_NANO is zero and nanoseconds if not.
+ */
+struct timex {
+       unsigned int modes;             /* clock mode bits (wo) */
+       long    offset;                 /* time offset (ns/us) (rw) */
+       long    freq;                   /* frequency offset (scaled PPM) (rw) */
+       long    maxerror;               /* maximum error (us) (rw) */
+       long    esterror;               /* estimated error (us) (rw) */
+       int     status;                 /* clock status bits (rw) */
+       long    constant;               /* poll interval (log2 s) (rw) */
+       long    precision;              /* clock precision (ns/us) (ro) */
+       long    tolerance;              /* clock frequency tolerance (scaled
+                                        * PPM) (ro) */
+       /*
+        * The following read-only structure members are implemented
+        * only if the PPS signal discipline is configured in the
+        * kernel. They are included in all configurations to insure
+        * portability.
+        */
+       long    ppsfreq;                /* PPS frequency (scaled PPM) (ro) */
+       long    jitter;                 /* PPS jitter (ns/us) (ro) */
+       int     shift;                  /* interval duration (s) (shift) (ro) */
+       long    stabil;                 /* PPS stability (scaled PPM) (ro) */
+       long    jitcnt;                 /* jitter limit exceeded (ro) */
+       long    calcnt;                 /* calibration intervals (ro) */
+       long    errcnt;                 /* calibration errors (ro) */
+       long    stbcnt;                 /* stability limit exceeded (ro) */
+};
+
+#ifdef __FreeBSD__
+
+#ifdef _KERNEL
+void   ntp_update_second(int64_t *adjustment, time_t *newsec);
+#else /* !_KERNEL */
+#include <sys/cdefs.h>
+
+__BEGIN_DECLS
+int    ntp_adjtime(struct timex *);
+int    ntp_gettime(struct ntptimeval *);
+__END_DECLS
+#endif /* _KERNEL */
+
+#endif /* __FreeBSD__ */
+
+#endif /* !_SYS_TIMEX_H_ */
diff --git a/cpukit/score/src/kern_tc.c b/cpukit/score/src/kern_tc.c
new file mode 100644
index 0000000..1c29041
--- /dev/null
+++ b/cpukit/score/src/kern_tc.c
@@ -0,0 +1,2039 @@
+/*-
+ * ----------------------------------------------------------------------------
+ * "THE BEER-WARE LICENSE" (Revision 42):
+ * <p...@freebsd.org> wrote this file.  As long as you retain this notice you
+ * can do whatever you want with this stuff. If we meet some day, and you think
+ * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
+ * ----------------------------------------------------------------------------
+ *
+ * Copyright (c) 2011 The FreeBSD Foundation
+ * All rights reserved.
+ *
+ * Portions of this software were developed by Julien Ridoux at the University
+ * of Melbourne under sponsorship from the FreeBSD Foundation.
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include "opt_compat.h"
+#include "opt_ntp.h"
+#include "opt_ffclock.h"
+
+#include <sys/param.h>
+#include <sys/kernel.h>
+#include <sys/limits.h>
+#ifdef FFCLOCK
+#include <sys/lock.h>
+#include <sys/mutex.h>
+#endif
+#include <sys/sysctl.h>
+#include <sys/syslog.h>
+#include <sys/systm.h>
+#include <sys/timeffc.h>
+#include <sys/timepps.h>
+#include <sys/timetc.h>
+#include <sys/timex.h>
+#include <sys/vdso.h>
+
+/*
+ * A large step happens on boot.  This constant detects such steps.
+ * It is relatively small so that ntp_update_second gets called enough
+ * in the typical 'missed a couple of seconds' case, but doesn't loop
+ * forever when the time step is large.
+ */
+#define LARGE_STEP     200
+
+/*
+ * Implement a dummy timecounter which we can use until we get a real one
+ * in the air.  This allows the console and other early stuff to use
+ * time services.
+ */
+
+static u_int
+dummy_get_timecount(struct timecounter *tc)
+{
+       static u_int now;
+
+       return (++now);
+}
+
+static struct timecounter dummy_timecounter = {
+       dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
+};
+
+struct timehands {
+       /* These fields must be initialized by the driver. */
+       struct timecounter      *th_counter;
+       int64_t                 th_adjustment;
+       uint64_t                th_scale;
+       u_int                   th_offset_count;
+       struct bintime          th_offset;
+       struct timeval          th_microtime;
+       struct timespec         th_nanotime;
+       /* Fields not to be copied in tc_windup start with th_generation. */
+       volatile u_int          th_generation;
+       struct timehands        *th_next;
+};
+
+static struct timehands th0;
+static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, 
&th0};
+static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, 
&th9};
+static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, 
&th8};
+static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, 
&th7};
+static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, 
&th6};
+static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, 
&th5};
+static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, 
&th4};
+static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, 
&th3};
+static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, 
&th2};
+static struct timehands th0 = {
+       &dummy_timecounter,
+       0,
+       (uint64_t)-1 / 1000000,
+       0,
+       {1, 0},
+       {0, 0},
+       {0, 0},
+       1,
+       &th1
+};
+
+static struct timehands *volatile timehands = &th0;
+struct timecounter *timecounter = &dummy_timecounter;
+static struct timecounter *timecounters = &dummy_timecounter;
+
+int tc_min_ticktock_freq = 1;
+
+volatile time_t time_second = 1;
+volatile time_t time_uptime = 1;
+
+struct bintime boottimebin;
+struct timeval boottime;
+static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
+SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
+    NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
+
+SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
+static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
+
+static int timestepwarnings;
+SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
+    &timestepwarnings, 0, "Log time steps");
+
+struct bintime bt_timethreshold;
+struct bintime bt_tickthreshold;
+sbintime_t sbt_timethreshold;
+sbintime_t sbt_tickthreshold;
+struct bintime tc_tick_bt;
+sbintime_t tc_tick_sbt;
+int tc_precexp;
+int tc_timepercentage = TC_DEFAULTPERC;
+static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS);
+SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation,
+    CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0,
+    sysctl_kern_timecounter_adjprecision, "I",
+    "Allowed time interval deviation in percents");
+
+static void tc_windup(void);
+static void cpu_tick_calibrate(int);
+
+void dtrace_getnanotime(struct timespec *tsp);
+
+static int
+sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
+{
+#ifndef __mips__
+#ifdef SCTL_MASK32
+       int tv[2];
+
+       if (req->flags & SCTL_MASK32) {
+               tv[0] = boottime.tv_sec;
+               tv[1] = boottime.tv_usec;
+               return SYSCTL_OUT(req, tv, sizeof(tv));
+       } else
+#endif
+#endif
+               return SYSCTL_OUT(req, &boottime, sizeof(boottime));
+}
+
+static int
+sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
+{
+       u_int ncount;
+       struct timecounter *tc = arg1;
+
+       ncount = tc->tc_get_timecount(tc);
+       return sysctl_handle_int(oidp, &ncount, 0, req);
+}
+
+static int
+sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
+{
+       uint64_t freq;
+       struct timecounter *tc = arg1;
+
+       freq = tc->tc_frequency;
+       return sysctl_handle_64(oidp, &freq, 0, req);
+}
+
+/*
+ * Return the difference between the timehands' counter value now and what
+ * was when we copied it to the timehands' offset_count.
+ */
+static __inline u_int
+tc_delta(struct timehands *th)
+{
+       struct timecounter *tc;
+
+       tc = th->th_counter;
+       return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
+           tc->tc_counter_mask);
+}
+
+/*
+ * Functions for reading the time.  We have to loop until we are sure that
+ * the timehands that we operated on was not updated under our feet.  See
+ * the comment in <sys/time.h> for a description of these 12 functions.
+ */
+
+#ifdef FFCLOCK
+void
+fbclock_binuptime(struct bintime *bt)
+{
+       struct timehands *th;
+       unsigned int gen;
+
+       do {
+               th = timehands;
+               gen = th->th_generation;
+               *bt = th->th_offset;
+               bintime_addx(bt, th->th_scale * tc_delta(th));
+       } while (gen == 0 || gen != th->th_generation);
+}
+
+void
+fbclock_nanouptime(struct timespec *tsp)
+{
+       struct bintime bt;
+
+       fbclock_binuptime(&bt);
+       bintime2timespec(&bt, tsp);
+}
+
+void
+fbclock_microuptime(struct timeval *tvp)
+{
+       struct bintime bt;
+
+       fbclock_binuptime(&bt);
+       bintime2timeval(&bt, tvp);
+}
+
+void
+fbclock_bintime(struct bintime *bt)
+{
+
+       fbclock_binuptime(bt);
+       bintime_add(bt, &boottimebin);
+}
+
+void
+fbclock_nanotime(struct timespec *tsp)
+{
+       struct bintime bt;
+
+       fbclock_bintime(&bt);
+       bintime2timespec(&bt, tsp);
+}
+
+void
+fbclock_microtime(struct timeval *tvp)
+{
+       struct bintime bt;
+
+       fbclock_bintime(&bt);
+       bintime2timeval(&bt, tvp);
+}
+
+void
+fbclock_getbinuptime(struct bintime *bt)
+{
+       struct timehands *th;
+       unsigned int gen;
+
+       do {
+               th = timehands;
+               gen = th->th_generation;
+               *bt = th->th_offset;
+       } while (gen == 0 || gen != th->th_generation);
+}
+
+void
+fbclock_getnanouptime(struct timespec *tsp)
+{
+       struct timehands *th;
+       unsigned int gen;
+
+       do {
+               th = timehands;
+               gen = th->th_generation;
+               bintime2timespec(&th->th_offset, tsp);
+       } while (gen == 0 || gen != th->th_generation);
+}
+
+void
+fbclock_getmicrouptime(struct timeval *tvp)
+{
+       struct timehands *th;
+       unsigned int gen;
+
+       do {
+               th = timehands;
+               gen = th->th_generation;
+               bintime2timeval(&th->th_offset, tvp);
+       } while (gen == 0 || gen != th->th_generation);
+}
+
+void
+fbclock_getbintime(struct bintime *bt)
+{
+       struct timehands *th;
+       unsigned int gen;
+
+       do {
+               th = timehands;
+               gen = th->th_generation;
+               *bt = th->th_offset;
+       } while (gen == 0 || gen != th->th_generation);
+       bintime_add(bt, &boottimebin);
+}
+
+void
+fbclock_getnanotime(struct timespec *tsp)
+{
+       struct timehands *th;
+       unsigned int gen;
+
+       do {
+               th = timehands;
+               gen = th->th_generation;
+               *tsp = th->th_nanotime;
+       } while (gen == 0 || gen != th->th_generation);
+}
+
+void
+fbclock_getmicrotime(struct timeval *tvp)
+{
+       struct timehands *th;
+       unsigned int gen;
+
+       do {
+               th = timehands;
+               gen = th->th_generation;
+               *tvp = th->th_microtime;
+       } while (gen == 0 || gen != th->th_generation);
+}
+#else /* !FFCLOCK */
+void
+binuptime(struct bintime *bt)
+{
+       struct timehands *th;
+       u_int gen;
+
+       do {
+               th = timehands;
+               gen = th->th_generation;
+               *bt = th->th_offset;
+               bintime_addx(bt, th->th_scale * tc_delta(th));
+       } while (gen == 0 || gen != th->th_generation);
+}
+
+void
+nanouptime(struct timespec *tsp)
+{
+       struct bintime bt;
+
+       binuptime(&bt);
+       bintime2timespec(&bt, tsp);
+}
+
+void
+microuptime(struct timeval *tvp)
+{
+       struct bintime bt;
+
+       binuptime(&bt);
+       bintime2timeval(&bt, tvp);
+}
+
+void
+bintime(struct bintime *bt)
+{
+
+       binuptime(bt);
+       bintime_add(bt, &boottimebin);
+}
+
+void
+nanotime(struct timespec *tsp)
+{
+       struct bintime bt;
+
+       bintime(&bt);
+       bintime2timespec(&bt, tsp);
+}
+
+void
+microtime(struct timeval *tvp)
+{
+       struct bintime bt;
+
+       bintime(&bt);
+       bintime2timeval(&bt, tvp);
+}
+
+void
+getbinuptime(struct bintime *bt)
+{
+       struct timehands *th;
+       u_int gen;
+
+       do {
+               th = timehands;
+               gen = th->th_generation;
+               *bt = th->th_offset;
+       } while (gen == 0 || gen != th->th_generation);
+}
+
+void
+getnanouptime(struct timespec *tsp)
+{
+       struct timehands *th;
+       u_int gen;
+
+       do {
+               th = timehands;
+               gen = th->th_generation;
+               bintime2timespec(&th->th_offset, tsp);
+       } while (gen == 0 || gen != th->th_generation);
+}
+
+void
+getmicrouptime(struct timeval *tvp)
+{
+       struct timehands *th;
+       u_int gen;
+
+       do {
+               th = timehands;
+               gen = th->th_generation;
+               bintime2timeval(&th->th_offset, tvp);
+       } while (gen == 0 || gen != th->th_generation);
+}
+
+void
+getbintime(struct bintime *bt)
+{
+       struct timehands *th;
+       u_int gen;
+
+       do {
+               th = timehands;
+               gen = th->th_generation;
+               *bt = th->th_offset;
+       } while (gen == 0 || gen != th->th_generation);
+       bintime_add(bt, &boottimebin);
+}
+
+void
+getnanotime(struct timespec *tsp)
+{
+       struct timehands *th;
+       u_int gen;
+
+       do {
+               th = timehands;
+               gen = th->th_generation;
+               *tsp = th->th_nanotime;
+       } while (gen == 0 || gen != th->th_generation);
+}
+
+void
+getmicrotime(struct timeval *tvp)
+{
+       struct timehands *th;
+       u_int gen;
+
+       do {
+               th = timehands;
+               gen = th->th_generation;
+               *tvp = th->th_microtime;
+       } while (gen == 0 || gen != th->th_generation);
+}
+#endif /* FFCLOCK */
+
+#ifdef FFCLOCK
+/*
+ * Support for feed-forward synchronization algorithms. This is heavily 
inspired
+ * by the timehands mechanism but kept independent from it. *_windup() 
functions
+ * have some connection to avoid accessing the timecounter hardware more than
+ * necessary.
+ */
+
+/* Feed-forward clock estimates kept updated by the synchronization daemon. */
+struct ffclock_estimate ffclock_estimate;
+struct bintime ffclock_boottime;       /* Feed-forward boot time estimate. */
+uint32_t ffclock_status;               /* Feed-forward clock status. */
+int8_t ffclock_updated;                        /* New estimates are available. 
*/
+struct mtx ffclock_mtx;                        /* Mutex on ffclock_estimate. */
+
+struct fftimehands {
+       struct ffclock_estimate cest;
+       struct bintime          tick_time;
+       struct bintime          tick_time_lerp;
+       ffcounter               tick_ffcount;
+       uint64_t                period_lerp;
+       volatile uint8_t        gen;
+       struct fftimehands      *next;
+};
+
+#define        NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x))
+
+static struct fftimehands ffth[10];
+static struct fftimehands *volatile fftimehands = ffth;
+
+static void
+ffclock_init(void)
+{
+       struct fftimehands *cur;
+       struct fftimehands *last;
+
+       memset(ffth, 0, sizeof(ffth));
+
+       last = ffth + NUM_ELEMENTS(ffth) - 1;
+       for (cur = ffth; cur < last; cur++)
+               cur->next = cur + 1;
+       last->next = ffth;
+
+       ffclock_updated = 0;
+       ffclock_status = FFCLOCK_STA_UNSYNC;
+       mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF);
+}
+
+/*
+ * Reset the feed-forward clock estimates. Called from inittodr() to get things
+ * kick started and uses the timecounter nominal frequency as a first period
+ * estimate. Note: this function may be called several time just after boot.
+ * Note: this is the only function that sets the value of boot time for the
+ * monotonic (i.e. uptime) version of the feed-forward clock.
+ */
+void
+ffclock_reset_clock(struct timespec *ts)
+{
+       struct timecounter *tc;
+       struct ffclock_estimate cest;
+
+       tc = timehands->th_counter;
+       memset(&cest, 0, sizeof(struct ffclock_estimate));
+
+       timespec2bintime(ts, &ffclock_boottime);
+       timespec2bintime(ts, &(cest.update_time));
+       ffclock_read_counter(&cest.update_ffcount);
+       cest.leapsec_next = 0;
+       cest.period = ((1ULL << 63) / tc->tc_frequency) << 1;
+       cest.errb_abs = 0;
+       cest.errb_rate = 0;
+       cest.status = FFCLOCK_STA_UNSYNC;
+       cest.leapsec_total = 0;
+       cest.leapsec = 0;
+
+       mtx_lock(&ffclock_mtx);
+       bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
+       ffclock_updated = INT8_MAX;
+       mtx_unlock(&ffclock_mtx);
+
+       printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name,
+           (unsigned long long)tc->tc_frequency, (long)ts->tv_sec,
+           (unsigned long)ts->tv_nsec);
+}
+
+/*
+ * Sub-routine to convert a time interval measured in RAW counter units to time
+ * in seconds stored in bintime format.
+ * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be
+ * larger than the max value of u_int (on 32 bit architecture). Loop to consume
+ * extra cycles.
+ */
+static void
+ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt)
+{
+       struct bintime bt2;
+       ffcounter delta, delta_max;
+
+       delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1;
+       bintime_clear(bt);
+       do {
+               if (ffdelta > delta_max)
+                       delta = delta_max;
+               else
+                       delta = ffdelta;
+               bt2.sec = 0;
+               bt2.frac = period;
+               bintime_mul(&bt2, (unsigned int)delta);
+               bintime_add(bt, &bt2);
+               ffdelta -= delta;
+       } while (ffdelta > 0);
+}
+
+/*
+ * Update the fftimehands.
+ * Push the tick ffcount and time(s) forward based on current clock estimate.
+ * The conversion from ffcounter to bintime relies on the difference clock
+ * principle, whose accuracy relies on computing small time intervals. If a new
+ * clock estimate has been passed by the synchronisation daemon, make it
+ * current, and compute the linear interpolation for monotonic time if needed.
+ */
+static void
+ffclock_windup(unsigned int delta)
+{
+       struct ffclock_estimate *cest;
+       struct fftimehands *ffth;
+       struct bintime bt, gap_lerp;
+       ffcounter ffdelta;
+       uint64_t frac;
+       unsigned int polling;
+       uint8_t forward_jump, ogen;
+
+       /*
+        * Pick the next timehand, copy current ffclock estimates and move tick
+        * times and counter forward.
+        */
+       forward_jump = 0;
+       ffth = fftimehands->next;
+       ogen = ffth->gen;
+       ffth->gen = 0;
+       cest = &ffth->cest;
+       bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate));
+       ffdelta = (ffcounter)delta;
+       ffth->period_lerp = fftimehands->period_lerp;
+
+       ffth->tick_time = fftimehands->tick_time;
+       ffclock_convert_delta(ffdelta, cest->period, &bt);
+       bintime_add(&ffth->tick_time, &bt);
+
+       ffth->tick_time_lerp = fftimehands->tick_time_lerp;
+       ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt);
+       bintime_add(&ffth->tick_time_lerp, &bt);
+
+       ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta;
+
+       /*
+        * Assess the status of the clock, if the last update is too old, it is
+        * likely the synchronisation daemon is dead and the clock is free
+        * running.
+        */
+       if (ffclock_updated == 0) {
+               ffdelta = ffth->tick_ffcount - cest->update_ffcount;
+               ffclock_convert_delta(ffdelta, cest->period, &bt);
+               if (bt.sec > 2 * FFCLOCK_SKM_SCALE)
+                       ffclock_status |= FFCLOCK_STA_UNSYNC;
+       }
+
+       /*
+        * If available, grab updated clock estimates and make them current.
+        * Recompute time at this tick using the updated estimates. The clock
+        * estimates passed the feed-forward synchronisation daemon may result
+        * in time conversion that is not monotonically increasing (just after
+        * the update). time_lerp is a particular linear interpolation over the
+        * synchronisation algo polling period that ensures monotonicity for the
+        * clock ids requesting it.
+        */
+       if (ffclock_updated > 0) {
+               bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate));
+               ffdelta = ffth->tick_ffcount - cest->update_ffcount;
+               ffth->tick_time = cest->update_time;
+               ffclock_convert_delta(ffdelta, cest->period, &bt);
+               bintime_add(&ffth->tick_time, &bt);
+
+               /* ffclock_reset sets ffclock_updated to INT8_MAX */
+               if (ffclock_updated == INT8_MAX)
+                       ffth->tick_time_lerp = ffth->tick_time;
+
+               if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >))
+                       forward_jump = 1;
+               else
+                       forward_jump = 0;
+
+               bintime_clear(&gap_lerp);
+               if (forward_jump) {
+                       gap_lerp = ffth->tick_time;
+                       bintime_sub(&gap_lerp, &ffth->tick_time_lerp);
+               } else {
+                       gap_lerp = ffth->tick_time_lerp;
+                       bintime_sub(&gap_lerp, &ffth->tick_time);
+               }
+
+               /*
+                * The reset from the RTC clock may be far from accurate, and
+                * reducing the gap between real time and interpolated time
+                * could take a very long time if the interpolated clock insists
+                * on strict monotonicity. The clock is reset under very strict
+                * conditions (kernel time is known to be wrong and
+                * synchronization daemon has been restarted recently.
+                * ffclock_boottime absorbs the jump to ensure boot time is
+                * correct and uptime functions stay consistent.
+                */
+               if (((ffclock_status & FFCLOCK_STA_UNSYNC) == 
FFCLOCK_STA_UNSYNC) &&
+                   ((cest->status & FFCLOCK_STA_UNSYNC) == 0) &&
+                   ((cest->status & FFCLOCK_STA_WARMUP) == 
FFCLOCK_STA_WARMUP)) {
+                       if (forward_jump)
+                               bintime_add(&ffclock_boottime, &gap_lerp);
+                       else
+                               bintime_sub(&ffclock_boottime, &gap_lerp);
+                       ffth->tick_time_lerp = ffth->tick_time;
+                       bintime_clear(&gap_lerp);
+               }
+
+               ffclock_status = cest->status;
+               ffth->period_lerp = cest->period;
+
+               /*
+                * Compute corrected period used for the linear interpolation of
+                * time. The rate of linear interpolation is capped to 5000PPM
+                * (5ms/s).
+                */
+               if (bintime_isset(&gap_lerp)) {
+                       ffdelta = cest->update_ffcount;
+                       ffdelta -= fftimehands->cest.update_ffcount;
+                       ffclock_convert_delta(ffdelta, cest->period, &bt);
+                       polling = bt.sec;
+                       bt.sec = 0;
+                       bt.frac = 5000000 * (uint64_t)18446744073LL;
+                       bintime_mul(&bt, polling);
+                       if (bintime_cmp(&gap_lerp, &bt, >))
+                               gap_lerp = bt;
+
+                       /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */
+                       frac = 0;
+                       if (gap_lerp.sec > 0) {
+                               frac -= 1;
+                               frac /= ffdelta / gap_lerp.sec;
+                       }
+                       frac += gap_lerp.frac / ffdelta;
+
+                       if (forward_jump)
+                               ffth->period_lerp += frac;
+                       else
+                               ffth->period_lerp -= frac;
+               }
+
+               ffclock_updated = 0;
+       }
+       if (++ogen == 0)
+               ogen = 1;
+       ffth->gen = ogen;
+       fftimehands = ffth;
+}
+
+/*
+ * Adjust the fftimehands when the timecounter is changed. Stating the obvious,
+ * the old and new hardware counter cannot be read simultaneously. tc_windup()
+ * does read the two counters 'back to back', but a few cycles are effectively
+ * lost, and not accumulated in tick_ffcount. This is a fairly radical
+ * operation for a feed-forward synchronization daemon, and it is its job to 
not
+ * pushing irrelevant data to the kernel. Because there is no locking here,
+ * simply force to ignore pending or next update to give daemon a chance to
+ * realize the counter has changed.
+ */
+static void
+ffclock_change_tc(struct timehands *th)
+{
+       struct fftimehands *ffth;
+       struct ffclock_estimate *cest;
+       struct timecounter *tc;
+       uint8_t ogen;
+
+       tc = th->th_counter;
+       ffth = fftimehands->next;
+       ogen = ffth->gen;
+       ffth->gen = 0;
+
+       cest = &ffth->cest;
+       bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate));
+       cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1;
+       cest->errb_abs = 0;
+       cest->errb_rate = 0;
+       cest->status |= FFCLOCK_STA_UNSYNC;
+
+       ffth->tick_ffcount = fftimehands->tick_ffcount;
+       ffth->tick_time_lerp = fftimehands->tick_time_lerp;
+       ffth->tick_time = fftimehands->tick_time;
+       ffth->period_lerp = cest->period;
+
+       /* Do not lock but ignore next update from synchronization daemon. */
+       ffclock_updated--;
+
+       if (++ogen == 0)
+               ogen = 1;
+       ffth->gen = ogen;
+       fftimehands = ffth;
+}
+
+/*
+ * Retrieve feed-forward counter and time of last kernel tick.
+ */
+void
+ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags)
+{
+       struct fftimehands *ffth;
+       uint8_t gen;
+
+       /*
+        * No locking but check generation has not changed. Also need to make
+        * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
+        */
+       do {
+               ffth = fftimehands;
+               gen = ffth->gen;
+               if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP)
+                       *bt = ffth->tick_time_lerp;
+               else
+                       *bt = ffth->tick_time;
+               *ffcount = ffth->tick_ffcount;
+       } while (gen == 0 || gen != ffth->gen);
+}
+
+/*
+ * Absolute clock conversion. Low level function to convert ffcounter to
+ * bintime. The ffcounter is converted using the current ffclock period 
estimate
+ * or the "interpolated period" to ensure monotonicity.
+ * NOTE: this conversion may have been deferred, and the clock updated since 
the
+ * hardware counter has been read.
+ */
+void
+ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags)
+{
+       struct fftimehands *ffth;
+       struct bintime bt2;
+       ffcounter ffdelta;
+       uint8_t gen;
+
+       /*
+        * No locking but check generation has not changed. Also need to make
+        * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
+        */
+       do {
+               ffth = fftimehands;
+               gen = ffth->gen;
+               if (ffcount > ffth->tick_ffcount)
+                       ffdelta = ffcount - ffth->tick_ffcount;
+               else
+                       ffdelta = ffth->tick_ffcount - ffcount;
+
+               if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) {
+                       *bt = ffth->tick_time_lerp;
+                       ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2);
+               } else {
+                       *bt = ffth->tick_time;
+                       ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2);
+               }
+
+               if (ffcount > ffth->tick_ffcount)
+                       bintime_add(bt, &bt2);
+               else
+                       bintime_sub(bt, &bt2);
+       } while (gen == 0 || gen != ffth->gen);
+}
+
+/*
+ * Difference clock conversion.
+ * Low level function to Convert a time interval measured in RAW counter units
+ * into bintime. The difference clock allows measuring small intervals much 
more
+ * reliably than the absolute clock.
+ */
+void
+ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt)
+{
+       struct fftimehands *ffth;
+       uint8_t gen;
+
+       /* No locking but check generation has not changed. */
+       do {
+               ffth = fftimehands;
+               gen = ffth->gen;
+               ffclock_convert_delta(ffdelta, ffth->cest.period, bt);
+       } while (gen == 0 || gen != ffth->gen);
+}
+
+/*
+ * Access to current ffcounter value.
+ */
+void
+ffclock_read_counter(ffcounter *ffcount)
+{
+       struct timehands *th;
+       struct fftimehands *ffth;
+       unsigned int gen, delta;
+
+       /*
+        * ffclock_windup() called from tc_windup(), safe to rely on
+        * th->th_generation only, for correct delta and ffcounter.
+        */
+       do {
+               th = timehands;
+               gen = th->th_generation;
+               ffth = fftimehands;
+               delta = tc_delta(th);
+               *ffcount = ffth->tick_ffcount;
+       } while (gen == 0 || gen != th->th_generation);
+
+       *ffcount += delta;
+}
+
+void
+binuptime(struct bintime *bt)
+{
+
+       binuptime_fromclock(bt, sysclock_active);
+}
+
+void
+nanouptime(struct timespec *tsp)
+{
+
+       nanouptime_fromclock(tsp, sysclock_active);
+}
+
+void
+microuptime(struct timeval *tvp)
+{
+
+       microuptime_fromclock(tvp, sysclock_active);
+}
+
+void
+bintime(struct bintime *bt)
+{
+
+       bintime_fromclock(bt, sysclock_active);
+}
+
+void
+nanotime(struct timespec *tsp)
+{
+
+       nanotime_fromclock(tsp, sysclock_active);
+}
+
+void
+microtime(struct timeval *tvp)
+{
+
+       microtime_fromclock(tvp, sysclock_active);
+}
+
+void
+getbinuptime(struct bintime *bt)
+{
+
+       getbinuptime_fromclock(bt, sysclock_active);
+}
+
+void
+getnanouptime(struct timespec *tsp)
+{
+
+       getnanouptime_fromclock(tsp, sysclock_active);
+}
+
+void
+getmicrouptime(struct timeval *tvp)
+{
+
+       getmicrouptime_fromclock(tvp, sysclock_active);
+}
+
+void
+getbintime(struct bintime *bt)
+{
+
+       getbintime_fromclock(bt, sysclock_active);
+}
+
+void
+getnanotime(struct timespec *tsp)
+{
+
+       getnanotime_fromclock(tsp, sysclock_active);
+}
+
+void
+getmicrotime(struct timeval *tvp)
+{
+
+       getmicrouptime_fromclock(tvp, sysclock_active);
+}
+
+#endif /* FFCLOCK */
+
+/*
+ * This is a clone of getnanotime and used for walltimestamps.
+ * The dtrace_ prefix prevents fbt from creating probes for
+ * it so walltimestamp can be safely used in all fbt probes.
+ */
+void
+dtrace_getnanotime(struct timespec *tsp)
+{
+       struct timehands *th;
+       u_int gen;
+
+       do {
+               th = timehands;
+               gen = th->th_generation;
+               *tsp = th->th_nanotime;
+       } while (gen == 0 || gen != th->th_generation);
+}
+
+/*
+ * System clock currently providing time to the system. Modifiable via sysctl
+ * when the FFCLOCK option is defined.
+ */
+int sysclock_active = SYSCLOCK_FBCK;
+
+/* Internal NTP status and error estimates. */
+extern int time_status;
+extern long time_esterror;
+
+/*
+ * Take a snapshot of sysclock data which can be used to compare system clocks
+ * and generate timestamps after the fact.
+ */
+void
+sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast)
+{
+       struct fbclock_info *fbi;
+       struct timehands *th;
+       struct bintime bt;
+       unsigned int delta, gen;
+#ifdef FFCLOCK
+       ffcounter ffcount;
+       struct fftimehands *ffth;
+       struct ffclock_info *ffi;
+       struct ffclock_estimate cest;
+
+       ffi = &clock_snap->ff_info;
+#endif
+
+       fbi = &clock_snap->fb_info;
+       delta = 0;
+
+       do {
+               th = timehands;
+               gen = th->th_generation;
+               fbi->th_scale = th->th_scale;
+               fbi->tick_time = th->th_offset;
+#ifdef FFCLOCK
+               ffth = fftimehands;
+               ffi->tick_time = ffth->tick_time_lerp;
+               ffi->tick_time_lerp = ffth->tick_time_lerp;
+               ffi->period = ffth->cest.period;
+               ffi->period_lerp = ffth->period_lerp;
+               clock_snap->ffcount = ffth->tick_ffcount;
+               cest = ffth->cest;
+#endif
+               if (!fast)
+                       delta = tc_delta(th);
+       } while (gen == 0 || gen != th->th_generation);
+
+       clock_snap->delta = delta;
+       clock_snap->sysclock_active = sysclock_active;
+
+       /* Record feedback clock status and error. */
+       clock_snap->fb_info.status = time_status;
+       /* XXX: Very crude estimate of feedback clock error. */
+       bt.sec = time_esterror / 1000000;
+       bt.frac = ((time_esterror - bt.sec) * 1000000) *
+           (uint64_t)18446744073709ULL;
+       clock_snap->fb_info.error = bt;
+
+#ifdef FFCLOCK
+       if (!fast)
+               clock_snap->ffcount += delta;
+
+       /* Record feed-forward clock leap second adjustment. */
+       ffi->leapsec_adjustment = cest.leapsec_total;
+       if (clock_snap->ffcount > cest.leapsec_next)
+               ffi->leapsec_adjustment -= cest.leapsec;
+
+       /* Record feed-forward clock status and error. */
+       clock_snap->ff_info.status = cest.status;
+       ffcount = clock_snap->ffcount - cest.update_ffcount;
+       ffclock_convert_delta(ffcount, cest.period, &bt);
+       /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */
+       bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL);
+       /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */
+       bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL);
+       clock_snap->ff_info.error = bt;
+#endif
+}
+
+/*
+ * Convert a sysclock snapshot into a struct bintime based on the specified
+ * clock source and flags.
+ */
+int
+sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt,
+    int whichclock, uint32_t flags)
+{
+#ifdef FFCLOCK
+       struct bintime bt2;
+       uint64_t period;
+#endif
+
+       switch (whichclock) {
+       case SYSCLOCK_FBCK:
+               *bt = cs->fb_info.tick_time;
+
+               /* If snapshot was created with !fast, delta will be >0. */
+               if (cs->delta > 0)
+                       bintime_addx(bt, cs->fb_info.th_scale * cs->delta);
+
+               if ((flags & FBCLOCK_UPTIME) == 0)
+                       bintime_add(bt, &boottimebin);
+               break;
+#ifdef FFCLOCK
+       case SYSCLOCK_FFWD:
+               if (flags & FFCLOCK_LERP) {
+                       *bt = cs->ff_info.tick_time_lerp;
+                       period = cs->ff_info.period_lerp;
+               } else {
+                       *bt = cs->ff_info.tick_time;
+                       period = cs->ff_info.period;
+               }
+
+               /* If snapshot was created with !fast, delta will be >0. */
+               if (cs->delta > 0) {
+                       ffclock_convert_delta(cs->delta, period, &bt2);
+                       bintime_add(bt, &bt2);
+               }
+
+               /* Leap second adjustment. */
+               if (flags & FFCLOCK_LEAPSEC)
+                       bt->sec -= cs->ff_info.leapsec_adjustment;
+
+               /* Boot time adjustment, for uptime/monotonic clocks. */
+               if (flags & FFCLOCK_UPTIME)
+                       bintime_sub(bt, &ffclock_boottime);
+               break;
+#endif
+       default:
+               return (EINVAL);
+               break;
+       }
+
+       return (0);
+}
+
+/*
+ * Initialize a new timecounter and possibly use it.
+ */
+void
+tc_init(struct timecounter *tc)
+{
+       u_int u;
+       struct sysctl_oid *tc_root;
+
+       u = tc->tc_frequency / tc->tc_counter_mask;
+       /* XXX: We need some margin here, 10% is a guess */
+       u *= 11;
+       u /= 10;
+       if (u > hz && tc->tc_quality >= 0) {
+               tc->tc_quality = -2000;
+               if (bootverbose) {
+                       printf("Timecounter \"%s\" frequency %ju Hz",
+                           tc->tc_name, (uintmax_t)tc->tc_frequency);
+                       printf(" -- Insufficient hz, needs at least %u\n", u);
+               }
+       } else if (tc->tc_quality >= 0 || bootverbose) {
+               printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
+                   tc->tc_name, (uintmax_t)tc->tc_frequency,
+                   tc->tc_quality);
+       }
+
+       tc->tc_next = timecounters;
+       timecounters = tc;
+       /*
+        * Set up sysctl tree for this counter.
+        */
+       tc_root = SYSCTL_ADD_NODE(NULL,
+           SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
+           CTLFLAG_RW, 0, "timecounter description");
+       SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
+           "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
+           "mask for implemented bits");
+       SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
+           "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
+           sysctl_kern_timecounter_get, "IU", "current timecounter value");
+       SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
+           "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc),
+            sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
+       SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
+           "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
+           "goodness of time counter");
+       /*
+        * Never automatically use a timecounter with negative quality.
+        * Even though we run on the dummy counter, switching here may be
+        * worse since this timecounter may not be monotonous.
+        */
+       if (tc->tc_quality < 0)
+               return;
+       if (tc->tc_quality < timecounter->tc_quality)
+               return;
+       if (tc->tc_quality == timecounter->tc_quality &&
+           tc->tc_frequency < timecounter->tc_frequency)
+               return;
+       (void)tc->tc_get_timecount(tc);
+       (void)tc->tc_get_timecount(tc);
+       timecounter = tc;
+}
+
+/* Report the frequency of the current timecounter. */
+uint64_t
+tc_getfrequency(void)
+{
+
+       return (timehands->th_counter->tc_frequency);
+}
+
+/*
+ * Step our concept of UTC.  This is done by modifying our estimate of
+ * when we booted.
+ * XXX: not locked.
+ */
+void
+tc_setclock(struct timespec *ts)
+{
+       struct timespec tbef, taft;
+       struct bintime bt, bt2;
+
+       cpu_tick_calibrate(1);
+       nanotime(&tbef);
+       timespec2bintime(ts, &bt);
+       binuptime(&bt2);
+       bintime_sub(&bt, &bt2);
+       bintime_add(&bt2, &boottimebin);
+       boottimebin = bt;
+       bintime2timeval(&bt, &boottime);
+
+       /* XXX fiddle all the little crinkly bits around the fiords... */
+       tc_windup();
+       nanotime(&taft);
+       if (timestepwarnings) {
+               log(LOG_INFO,
+                   "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
+                   (intmax_t)tbef.tv_sec, tbef.tv_nsec,
+                   (intmax_t)taft.tv_sec, taft.tv_nsec,
+                   (intmax_t)ts->tv_sec, ts->tv_nsec);
+       }
+       cpu_tick_calibrate(1);
+}
+
+/*
+ * Initialize the next struct timehands in the ring and make
+ * it the active timehands.  Along the way we might switch to a different
+ * timecounter and/or do seconds processing in NTP.  Slightly magic.
+ */
+static void
+tc_windup(void)
+{
+       struct bintime bt;
+       struct timehands *th, *tho;
+       uint64_t scale;
+       u_int delta, ncount, ogen;
+       int i;
+       time_t t;
+
+       /*
+        * Make the next timehands a copy of the current one, but do not
+        * overwrite the generation or next pointer.  While we update
+        * the contents, the generation must be zero.
+        */
+       tho = timehands;
+       th = tho->th_next;
+       ogen = th->th_generation;
+       th->th_generation = 0;
+       bcopy(tho, th, offsetof(struct timehands, th_generation));
+
+       /*
+        * Capture a timecounter delta on the current timecounter and if
+        * changing timecounters, a counter value from the new timecounter.
+        * Update the offset fields accordingly.
+        */
+       delta = tc_delta(th);
+       if (th->th_counter != timecounter)
+               ncount = timecounter->tc_get_timecount(timecounter);
+       else
+               ncount = 0;
+#ifdef FFCLOCK
+       ffclock_windup(delta);
+#endif
+       th->th_offset_count += delta;
+       th->th_offset_count &= th->th_counter->tc_counter_mask;
+       while (delta > th->th_counter->tc_frequency) {
+               /* Eat complete unadjusted seconds. */
+               delta -= th->th_counter->tc_frequency;
+               th->th_offset.sec++;
+       }
+       if ((delta > th->th_counter->tc_frequency / 2) &&
+           (th->th_scale * delta < ((uint64_t)1 << 63))) {
+               /* The product th_scale * delta just barely overflows. */
+               th->th_offset.sec++;
+       }
+       bintime_addx(&th->th_offset, th->th_scale * delta);
+
+       /*
+        * Hardware latching timecounters may not generate interrupts on
+        * PPS events, so instead we poll them.  There is a finite risk that
+        * the hardware might capture a count which is later than the one we
+        * got above, and therefore possibly in the next NTP second which might
+        * have a different rate than the current NTP second.  It doesn't
+        * matter in practice.
+        */
+       if (tho->th_counter->tc_poll_pps)
+               tho->th_counter->tc_poll_pps(tho->th_counter);
+
+       /*
+        * Deal with NTP second processing.  The for loop normally
+        * iterates at most once, but in extreme situations it might
+        * keep NTP sane if timeouts are not run for several seconds.
+        * At boot, the time step can be large when the TOD hardware
+        * has been read, so on really large steps, we call
+        * ntp_update_second only twice.  We need to call it twice in
+        * case we missed a leap second.
+        */
+       bt = th->th_offset;
+       bintime_add(&bt, &boottimebin);
+       i = bt.sec - tho->th_microtime.tv_sec;
+       if (i > LARGE_STEP)
+               i = 2;
+       for (; i > 0; i--) {
+               t = bt.sec;
+               ntp_update_second(&th->th_adjustment, &bt.sec);
+               if (bt.sec != t)
+                       boottimebin.sec += bt.sec - t;
+       }
+       /* Update the UTC timestamps used by the get*() functions. */
+       /* XXX shouldn't do this here.  Should force non-`get' versions. */
+       bintime2timeval(&bt, &th->th_microtime);
+       bintime2timespec(&bt, &th->th_nanotime);
+
+       /* Now is a good time to change timecounters. */
+       if (th->th_counter != timecounter) {
+#ifndef __arm__
+               if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0)
+                       cpu_disable_c2_sleep++;
+               if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0)
+                       cpu_disable_c2_sleep--;
+#endif
+               th->th_counter = timecounter;
+               th->th_offset_count = ncount;
+               tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
+                   (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
+#ifdef FFCLOCK
+               ffclock_change_tc(th);
+#endif
+       }
+
+       /*-
+        * Recalculate the scaling factor.  We want the number of 1/2^64
+        * fractions of a second per period of the hardware counter, taking
+        * into account the th_adjustment factor which the NTP PLL/adjtime(2)
+        * processing provides us with.
+        *
+        * The th_adjustment is nanoseconds per second with 32 bit binary
+        * fraction and we want 64 bit binary fraction of second:
+        *
+        *       x = a * 2^32 / 10^9 = a * 4.294967296
+        *
+        * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
+        * we can only multiply by about 850 without overflowing, that
+        * leaves no suitably precise fractions for multiply before divide.
+        *
+        * Divide before multiply with a fraction of 2199/512 results in a
+        * systematic undercompensation of 10PPM of th_adjustment.  On a
+        * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
+        *
+        * We happily sacrifice the lowest of the 64 bits of our result
+        * to the goddess of code clarity.
+        *
+        */
+       scale = (uint64_t)1 << 63;
+       scale += (th->th_adjustment / 1024) * 2199;
+       scale /= th->th_counter->tc_frequency;
+       th->th_scale = scale * 2;
+
+       /*
+        * Now that the struct timehands is again consistent, set the new
+        * generation number, making sure to not make it zero.
+        */
+       if (++ogen == 0)
+               ogen = 1;
+       th->th_generation = ogen;
+
+       /* Go live with the new struct timehands. */
+#ifdef FFCLOCK
+       switch (sysclock_active) {
+       case SYSCLOCK_FBCK:
+#endif
+               time_second = th->th_microtime.tv_sec;
+               time_uptime = th->th_offset.sec;
+#ifdef FFCLOCK
+               break;
+       case SYSCLOCK_FFWD:
+               time_second = fftimehands->tick_time_lerp.sec;
+               time_uptime = fftimehands->tick_time_lerp.sec - 
ffclock_boottime.sec;
+               break;
+       }
+#endif
+
+       timehands = th;
+       timekeep_push_vdso();
+}
+
+/* Report or change the active timecounter hardware. */
+static int
+sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
+{
+       char newname[32];
+       struct timecounter *newtc, *tc;
+       int error;
+
+       tc = timecounter;
+       strlcpy(newname, tc->tc_name, sizeof(newname));
+
+       error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
+       if (error != 0 || req->newptr == NULL ||
+           strcmp(newname, tc->tc_name) == 0)
+               return (error);
+       for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
+               if (strcmp(newname, newtc->tc_name) != 0)
+                       continue;
+
+               /* Warm up new timecounter. */
+               (void)newtc->tc_get_timecount(newtc);
+               (void)newtc->tc_get_timecount(newtc);
+
+               timecounter = newtc;
+
+               /*
+                * The vdso timehands update is deferred until the next
+                * 'tc_windup()'.
+                *
+                * This is prudent given that 'timekeep_push_vdso()' does not
+                * use any locking and that it can be called in hard interrupt
+                * context via 'tc_windup()'.
+                */
+               return (0);
+       }
+       return (EINVAL);
+}
+
+SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
+    0, 0, sysctl_kern_timecounter_hardware, "A",
+    "Timecounter hardware selected");
+
+
+/* Report or change the active timecounter hardware. */
+static int
+sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
+{
+       char buf[32], *spc;
+       struct timecounter *tc;
+       int error;
+
+       spc = "";
+       error = 0;
+       for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
+               sprintf(buf, "%s%s(%d)",
+                   spc, tc->tc_name, tc->tc_quality);
+               error = SYSCTL_OUT(req, buf, strlen(buf));
+               spc = " ";
+       }
+       return (error);
+}
+
+SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
+    0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware 
detected");
+
+/*
+ * RFC 2783 PPS-API implementation.
+ */
+
+static int
+pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps)
+{
+       int err, timo;
+       pps_seq_t aseq, cseq;
+       struct timeval tv;
+
+       if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
+               return (EINVAL);
+
+       /*
+        * If no timeout is requested, immediately return whatever values were
+        * most recently captured.  If timeout seconds is -1, that's a request
+        * to block without a timeout.  WITNESS won't let us sleep forever
+        * without a lock (we really don't need a lock), so just repeatedly
+        * sleep a long time.
+        */
+       if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) {
+               if (fapi->timeout.tv_sec == -1)
+                       timo = 0x7fffffff;
+               else {
+                       tv.tv_sec = fapi->timeout.tv_sec;
+                       tv.tv_usec = fapi->timeout.tv_nsec / 1000;
+                       timo = tvtohz(&tv);
+               }
+               aseq = pps->ppsinfo.assert_sequence;
+               cseq = pps->ppsinfo.clear_sequence;
+               while (aseq == pps->ppsinfo.assert_sequence &&
+                   cseq == pps->ppsinfo.clear_sequence) {
+                       err = tsleep(pps, PCATCH, "ppsfch", timo);
+                       if (err == EWOULDBLOCK && fapi->timeout.tv_sec == -1) {
+                               continue;
+                       } else if (err != 0) {
+                               return (err);
+                       }
+               }
+       }
+
+       pps->ppsinfo.current_mode = pps->ppsparam.mode;
+       fapi->pps_info_buf = pps->ppsinfo;
+
+       return (0);
+}
+
+int
+pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
+{
+       pps_params_t *app;
+       struct pps_fetch_args *fapi;
+#ifdef FFCLOCK
+       struct pps_fetch_ffc_args *fapi_ffc;
+#endif
+#ifdef PPS_SYNC
+       struct pps_kcbind_args *kapi;
+#endif
+
+       KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
+       switch (cmd) {
+       case PPS_IOC_CREATE:
+               return (0);
+       case PPS_IOC_DESTROY:
+               return (0);
+       case PPS_IOC_SETPARAMS:
+               app = (pps_params_t *)data;
+               if (app->mode & ~pps->ppscap)
+                       return (EINVAL);
+#ifdef FFCLOCK
+               /* Ensure only a single clock is selected for ffc timestamp. */
+               if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK)
+                       return (EINVAL);
+#endif
+               pps->ppsparam = *app;
+               return (0);
+       case PPS_IOC_GETPARAMS:
+               app = (pps_params_t *)data;
+               *app = pps->ppsparam;
+               app->api_version = PPS_API_VERS_1;
+               return (0);
+       case PPS_IOC_GETCAP:
+               *(int*)data = pps->ppscap;
+               return (0);
+       case PPS_IOC_FETCH:
+               fapi = (struct pps_fetch_args *)data;
+               return (pps_fetch(fapi, pps));
+#ifdef FFCLOCK
+       case PPS_IOC_FETCH_FFCOUNTER:
+               fapi_ffc = (struct pps_fetch_ffc_args *)data;
+               if (fapi_ffc->tsformat && fapi_ffc->tsformat !=
+                   PPS_TSFMT_TSPEC)
+                       return (EINVAL);
+               if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec)
+                       return (EOPNOTSUPP);
+               pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode;
+               fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc;
+               /* Overwrite timestamps if feedback clock selected. */
+               switch (pps->ppsparam.mode & PPS_TSCLK_MASK) {
+               case PPS_TSCLK_FBCK:
+                       fapi_ffc->pps_info_buf_ffc.assert_timestamp =
+                           pps->ppsinfo.assert_timestamp;
+                       fapi_ffc->pps_info_buf_ffc.clear_timestamp =
+                           pps->ppsinfo.clear_timestamp;
+                       break;
+               case PPS_TSCLK_FFWD:
+                       break;
+               default:
+                       break;
+               }
+               return (0);
+#endif /* FFCLOCK */
+       case PPS_IOC_KCBIND:
+#ifdef PPS_SYNC
+               kapi = (struct pps_kcbind_args *)data;
+               /* XXX Only root should be able to do this */
+               if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
+                       return (EINVAL);
+               if (kapi->kernel_consumer != PPS_KC_HARDPPS)
+                       return (EINVAL);
+               if (kapi->edge & ~pps->ppscap)
+                       return (EINVAL);
+               pps->kcmode = kapi->edge;
+               return (0);
+#else
+               return (EOPNOTSUPP);
+#endif
+       default:
+               return (ENOIOCTL);
+       }
+}
+
+void
+pps_init(struct pps_state *pps)
+{
+       pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT;
+       if (pps->ppscap & PPS_CAPTUREASSERT)
+               pps->ppscap |= PPS_OFFSETASSERT;
+       if (pps->ppscap & PPS_CAPTURECLEAR)
+               pps->ppscap |= PPS_OFFSETCLEAR;
+#ifdef FFCLOCK
+       pps->ppscap |= PPS_TSCLK_MASK;
+#endif
+}
+
+void
+pps_capture(struct pps_state *pps)
+{
+       struct timehands *th;
+
+       KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
+       th = timehands;
+       pps->capgen = th->th_generation;
+       pps->capth = th;
+#ifdef FFCLOCK
+       pps->capffth = fftimehands;
+#endif
+       pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
+       if (pps->capgen != th->th_generation)
+               pps->capgen = 0;
+}
+
+void
+pps_event(struct pps_state *pps, int event)
+{
+       struct bintime bt;
+       struct timespec ts, *tsp, *osp;
+       u_int tcount, *pcount;
+       int foff, fhard;
+       pps_seq_t *pseq;
+#ifdef FFCLOCK
+       struct timespec *tsp_ffc;
+       pps_seq_t *pseq_ffc;
+       ffcounter *ffcount;
+#endif
+
+       KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
+       /* If the timecounter was wound up underneath us, bail out. */
+       if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
+               return;
+
+       /* Things would be easier with arrays. */
+       if (event == PPS_CAPTUREASSERT) {
+               tsp = &pps->ppsinfo.assert_timestamp;
+               osp = &pps->ppsparam.assert_offset;
+               foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
+               fhard = pps->kcmode & PPS_CAPTUREASSERT;
+               pcount = &pps->ppscount[0];
+               pseq = &pps->ppsinfo.assert_sequence;
+#ifdef FFCLOCK
+               ffcount = &pps->ppsinfo_ffc.assert_ffcount;
+               tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp;
+               pseq_ffc = &pps->ppsinfo_ffc.assert_sequence;
+#endif
+       } else {
+               tsp = &pps->ppsinfo.clear_timestamp;
+               osp = &pps->ppsparam.clear_offset;
+               foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
+               fhard = pps->kcmode & PPS_CAPTURECLEAR;
+               pcount = &pps->ppscount[1];
+               pseq = &pps->ppsinfo.clear_sequence;
+#ifdef FFCLOCK
+               ffcount = &pps->ppsinfo_ffc.clear_ffcount;
+               tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp;
+               pseq_ffc = &pps->ppsinfo_ffc.clear_sequence;
+#endif
+       }
+
+       /*
+        * If the timecounter changed, we cannot compare the count values, so
+        * we have to drop the rest of the PPS-stuff until the next event.
+        */
+       if (pps->ppstc != pps->capth->th_counter) {
+               pps->ppstc = pps->capth->th_counter;
+               *pcount = pps->capcount;
+               pps->ppscount[2] = pps->capcount;
+               return;
+       }
+
+       /* Convert the count to a timespec. */
+       tcount = pps->capcount - pps->capth->th_offset_count;
+       tcount &= pps->capth->th_counter->tc_counter_mask;
+       bt = pps->capth->th_offset;
+       bintime_addx(&bt, pps->capth->th_scale * tcount);
+       bintime_add(&bt, &boottimebin);
+       bintime2timespec(&bt, &ts);
+
+       /* If the timecounter was wound up underneath us, bail out. */
+       if (pps->capgen != pps->capth->th_generation)
+               return;
+
+       *pcount = pps->capcount;
+       (*pseq)++;
+       *tsp = ts;
+
+       if (foff) {
+               timespecadd(tsp, osp);
+               if (tsp->tv_nsec < 0) {
+                       tsp->tv_nsec += 1000000000;
+                       tsp->tv_sec -= 1;
+               }
+       }
+
+#ifdef FFCLOCK
+       *ffcount = pps->capffth->tick_ffcount + tcount;
+       bt = pps->capffth->tick_time;
+       ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt);
+       bintime_add(&bt, &pps->capffth->tick_time);
+       bintime2timespec(&bt, &ts);
+       (*pseq_ffc)++;
+       *tsp_ffc = ts;
+#endif
+
+#ifdef PPS_SYNC
+       if (fhard) {
+               uint64_t scale;
+
+               /*
+                * Feed the NTP PLL/FLL.
+                * The FLL wants to know how many (hardware) nanoseconds
+                * elapsed since the previous event.
+                */
+               tcount = pps->capcount - pps->ppscount[2];
+               pps->ppscount[2] = pps->capcount;
+               tcount &= pps->capth->th_counter->tc_counter_mask;
+               scale = (uint64_t)1 << 63;
+               scale /= pps->capth->th_counter->tc_frequency;
+               scale *= 2;
+               bt.sec = 0;
+               bt.frac = 0;
+               bintime_addx(&bt, scale * tcount);
+               bintime2timespec(&bt, &ts);
+               hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
+       }
+#endif
+
+       /* Wakeup anyone sleeping in pps_fetch().  */
+       wakeup(pps);
+}
+
+/*
+ * Timecounters need to be updated every so often to prevent the hardware
+ * counter from overflowing.  Updating also recalculates the cached values
+ * used by the get*() family of functions, so their precision depends on
+ * the update frequency.
+ */
+
+static int tc_tick;
+SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
+    "Approximate number of hardclock ticks in a millisecond");
+
+void
+tc_ticktock(int cnt)
+{
+       static int count;
+
+       count += cnt;
+       if (count < tc_tick)
+               return;
+       count = 0;
+       tc_windup();
+}
+
+static void __inline
+tc_adjprecision(void)
+{
+       int t;
+
+       if (tc_timepercentage > 0) {
+               t = (99 + tc_timepercentage) / tc_timepercentage;
+               tc_precexp = fls(t + (t >> 1)) - 1;
+               FREQ2BT(hz / tc_tick, &bt_timethreshold);
+               FREQ2BT(hz, &bt_tickthreshold);
+               bintime_shift(&bt_timethreshold, tc_precexp);
+               bintime_shift(&bt_tickthreshold, tc_precexp);
+       } else {
+               tc_precexp = 31;
+               bt_timethreshold.sec = INT_MAX;
+               bt_timethreshold.frac = ~(uint64_t)0;
+               bt_tickthreshold = bt_timethreshold;
+       }
+       sbt_timethreshold = bttosbt(bt_timethreshold);
+       sbt_tickthreshold = bttosbt(bt_tickthreshold);
+}
+
+static int
+sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS)
+{
+       int error, val;
+
+       val = tc_timepercentage;
+       error = sysctl_handle_int(oidp, &val, 0, req);
+       if (error != 0 || req->newptr == NULL)
+               return (error);
+       tc_timepercentage = val;
+       if (cold)
+               goto done;
+       tc_adjprecision();
+done:
+       return (0);
+}
+
+static void
+inittimecounter(void *dummy)
+{
+       u_int p;
+       int tick_rate;
+
+       /*
+        * Set the initial timeout to
+        * max(1, <approx. number of hardclock ticks in a millisecond>).
+        * People should probably not use the sysctl to set the timeout
+        * to smaller than its inital value, since that value is the
+        * smallest reasonable one.  If they want better timestamps they
+        * should use the non-"get"* functions.
+        */
+       if (hz > 1000)
+               tc_tick = (hz + 500) / 1000;
+       else
+               tc_tick = 1;
+       tc_adjprecision();
+       FREQ2BT(hz, &tick_bt);
+       tick_sbt = bttosbt(tick_bt);
+       tick_rate = hz / tc_tick;
+       FREQ2BT(tick_rate, &tc_tick_bt);
+       tc_tick_sbt = bttosbt(tc_tick_bt);
+       p = (tc_tick * 1000000) / hz;
+       printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
+
+#ifdef FFCLOCK
+       ffclock_init();
+#endif
+       /* warm up new timecounter (again) and get rolling. */
+       (void)timecounter->tc_get_timecount(timecounter);
+       (void)timecounter->tc_get_timecount(timecounter);
+       tc_windup();
+}
+
+SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
+
+/* Cpu tick handling -------------------------------------------------*/
+
+static int cpu_tick_variable;
+static uint64_t        cpu_tick_frequency;
+
+static uint64_t
+tc_cpu_ticks(void)
+{
+       static uint64_t base;
+       static unsigned last;
+       unsigned u;
+       struct timecounter *tc;
+
+       tc = timehands->th_counter;
+       u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
+       if (u < last)
+               base += (uint64_t)tc->tc_counter_mask + 1;
+       last = u;
+       return (u + base);
+}
+
+void
+cpu_tick_calibration(void)
+{
+       static time_t last_calib;
+
+       if (time_uptime != last_calib && !(time_uptime & 0xf)) {
+               cpu_tick_calibrate(0);
+               last_calib = time_uptime;
+       }
+}
+
+/*
+ * This function gets called every 16 seconds on only one designated
+ * CPU in the system from hardclock() via cpu_tick_calibration()().
+ *
+ * Whenever the real time clock is stepped we get called with reset=1
+ * to make sure we handle suspend/resume and similar events correctly.
+ */
+
+static void
+cpu_tick_calibrate(int reset)
+{
+       static uint64_t c_last;
+       uint64_t c_this, c_delta;
+       static struct bintime  t_last;
+       struct bintime t_this, t_delta;
+       uint32_t divi;
+
+       if (reset) {
+               /* The clock was stepped, abort & reset */
+               t_last.sec = 0;
+               return;
+       }
+
+       /* we don't calibrate fixed rate cputicks */
+       if (!cpu_tick_variable)
+               return;
+
+       getbinuptime(&t_this);
+       c_this = cpu_ticks();
+       if (t_last.sec != 0) {
+               c_delta = c_this - c_last;
+               t_delta = t_this;
+               bintime_sub(&t_delta, &t_last);
+               /*
+                * Headroom:
+                *      2^(64-20) / 16[s] =
+                *      2^(44) / 16[s] =
+                *      17.592.186.044.416 / 16 =
+                *      1.099.511.627.776 [Hz]
+                */
+               divi = t_delta.sec << 20;
+               divi |= t_delta.frac >> (64 - 20);
+               c_delta <<= 20;
+               c_delta /= divi;
+               if (c_delta > cpu_tick_frequency) {
+                       if (0 && bootverbose)
+                               printf("cpu_tick increased to %ju Hz\n",
+                                   c_delta);
+                       cpu_tick_frequency = c_delta;
+               }
+       }
+       c_last = c_this;
+       t_last = t_this;
+}
+
+void
+set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
+{
+
+       if (func == NULL) {
+               cpu_ticks = tc_cpu_ticks;
+       } else {
+               cpu_tick_frequency = freq;
+               cpu_tick_variable = var;
+               cpu_ticks = func;
+       }
+}
+
+uint64_t
+cpu_tickrate(void)
+{
+
+       if (cpu_ticks == tc_cpu_ticks) 
+               return (tc_getfrequency());
+       return (cpu_tick_frequency);
+}
+
+/*
+ * We need to be slightly careful converting cputicks to microseconds.
+ * There is plenty of margin in 64 bits of microseconds (half a million
+ * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
+ * before divide conversion (to retain precision) we find that the
+ * margin shrinks to 1.5 hours (one millionth of 146y).
+ * With a three prong approach we never lose significant bits, no
+ * matter what the cputick rate and length of timeinterval is.
+ */
+
+uint64_t
+cputick2usec(uint64_t tick)
+{
+
+       if (tick > 18446744073709551LL)         /* floor(2^64 / 1000) */
+               return (tick / (cpu_tickrate() / 1000000LL));
+       else if (tick > 18446744073709LL)       /* floor(2^64 / 1000000) */
+               return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
+       else
+               return ((tick * 1000000LL) / cpu_tickrate());
+}
+
+cpu_tick_f     *cpu_ticks = tc_cpu_ticks;
+
+static int vdso_th_enable = 1;
+static int
+sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)
+{
+       int old_vdso_th_enable, error;
+
+       old_vdso_th_enable = vdso_th_enable;
+       error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req);
+       if (error != 0)
+               return (error);
+       vdso_th_enable = old_vdso_th_enable;
+       return (0);
+}
+SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime,
+    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
+    NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day");
+
+uint32_t
+tc_fill_vdso_timehands(struct vdso_timehands *vdso_th)
+{
+       struct timehands *th;
+       uint32_t enabled;
+
+       th = timehands;
+       vdso_th->th_algo = VDSO_TH_ALGO_1;
+       vdso_th->th_scale = th->th_scale;
+       vdso_th->th_offset_count = th->th_offset_count;
+       vdso_th->th_counter_mask = th->th_counter->tc_counter_mask;
+       vdso_th->th_offset = th->th_offset;
+       vdso_th->th_boottime = boottimebin;
+       enabled = cpu_fill_vdso_timehands(vdso_th, th->th_counter);
+       if (!vdso_th_enable)
+               enabled = 0;
+       return (enabled);
+}
+
+#ifdef COMPAT_FREEBSD32
+uint32_t
+tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
+{
+       struct timehands *th;
+       uint32_t enabled;
+
+       th = timehands;
+       vdso_th32->th_algo = VDSO_TH_ALGO_1;
+       *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale;
+       vdso_th32->th_offset_count = th->th_offset_count;
+       vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask;
+       vdso_th32->th_offset.sec = th->th_offset.sec;
+       *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac;
+       vdso_th32->th_boottime.sec = boottimebin.sec;
+       *(uint64_t *)&vdso_th32->th_boottime.frac[0] = boottimebin.frac;
+       enabled = cpu_fill_vdso_timehands32(vdso_th32, th->th_counter);
+       if (!vdso_th_enable)
+               enabled = 0;
+       return (enabled);
+}
+#endif
diff --git a/cpukit/score/src/opt_compat.h b/cpukit/score/src/opt_compat.h
new file mode 100644
index 0000000..e69de29
diff --git a/cpukit/score/src/opt_ffclock.h b/cpukit/score/src/opt_ffclock.h
new file mode 100644
index 0000000..e69de29
diff --git a/cpukit/score/src/opt_ntp.h b/cpukit/score/src/opt_ntp.h
new file mode 100644
index 0000000..e69de29
-- 
1.8.4.5

_______________________________________________
devel mailing list
devel@rtems.org
http://lists.rtems.org/mailman/listinfo/devel

Reply via email to